ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 紀要論文
  2. 広島工業大学研究紀要
  3. 10

表面に周期的に分布する半楕円体状の接触圧力による半無限弾性体内部の応力解析 (第2報 接触面の形状寸法と周期の比の影響について-数値解析結果)

https://it-hiroshima.repo.nii.ac.jp/records/302
https://it-hiroshima.repo.nii.ac.jp/records/302
4d8dddec-112a-4d9a-935c-dac347f01796
名前 / ファイル ライセンス アクション
kenkyukiyo10173.pdf kenkyukiyo10173.pdf (331.9 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2023-03-30
タイトル
タイトル 表面に周期的に分布する半楕円体状の接触圧力による半無限弾性体内部の応力解析 (第2報 接触面の形状寸法と周期の比の影響について-数値解析結果)
タイトル
タイトル The analysis of stress distribution in a semi-infinite elastic body by periodically spaced semi-ellipsoid contact pressures (2nd Report Effect of the ratio of the size of contact area to the spacing of load bearing asperities-Numerical calculations)
言語 en
言語
言語 jpn
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
著者 片山, 剛之丞

× 片山, 剛之丞

片山, 剛之丞

ja-Kana カタヤマ, ゴウノジョウ

Search repository
山下, 尚義

× 山下, 尚義

山下, 尚義

ja-Kana ヤマシタ, ナオヨシ

Search repository
Ktayama, Gonojo

× Ktayama, Gonojo

en Ktayama, Gonojo

Search repository
Yamashita, Naoyoshi

× Yamashita, Naoyoshi

en Yamashita, Naoyoshi

Search repository
抄録
内容記述タイプ Abstract
内容記述 The classical theory of contact between elastic bodies was first published by H. Hertz in 1881. The problem actually solved by Hertz,however,was a very restricted one; it concerned two elastic bodies in static contact under the action of a steady resultant force acting normal to the tangent plane at the point of contact. The surfaces of the two bodies are assumed to be smooth and continuous in the neighbourhood of the region of contact,with radii of curvature which are large compared with the actual dimensions of the contact area. lt is immediately clear that the Hertzian analysis cannot hold for rough surfaces. The designer is frequently confronted with the problem of estimating the appropriate value for the allowable contact pressure in gears,or anti-friction bearings. One of reasons for this difficulty is the lack of the knowledge for the effect of surface roughness on the contact fatigue. In the previous report,we derivated the theoretical equations for the stress field in a semi-infinite elastic body by normally loaded,periodically spaced semi-ellipsoid pressures. lt is intended that this model represent the contact problem of two nominally flat surfaces. One of the surfaces was assumed to be covered with asperities whose tips were represented by the ellipsoid of the same height. The effect of spacing of load-bearing asperities and the form and sizes of contact areas upon the state of stress within the body is studied. It is shown that the maximum octahedral shear stress occurs at the surface as the contact-spot spacing becomes small. Further,as the neighbour asperities approach together,the magnitude of tensile stress at the circumterential point of a circular contact on the surface becomes large. We discuss the variation of two shear stresses near the surface under the rolling motion. It is shown that the amplitude of the shear stress acting on a Z=const.-plane is larger than one of the shear stress acting in a direction inclined at an angle of 45 deg. to the direction of the two principal stress. Thus,it is suggested,from the above numerical calculations,that damage to the surface of curved elastic pairs in contact under cyclic loading starts from the point of very shallow depth below the surface.
書誌情報 広島工業大学研究紀要

巻 10, p. 173-180, 発行日 1976-01
出版者
出版者 広島工業大学
ISSN
収録物識別子タイプ ISSN
収録物識別子 03851672
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN0021271X
関連サイト
識別子タイプ URI
関連識別子 http://ci.nii.ac.jp/naid/40003283894/
関連名称 http://ci.nii.ac.jp/naid/40003283894/
フォーマット
内容記述タイプ Other
内容記述 application/pdf
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
日本十進分類法
主題Scheme NDC
主題 423
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-25 10:53:01.599097
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3