Article

Linear invariant families on the homogeneous ball of a complex Banach space

Tatsuhiro HONDA*

(Received Oct. 31, 2012)

Abstract

We study the notion of linear invariance on the unit ball of a JB*-triple X, and we obtain some connection between the norm-order of a linear invariant family and the starlikeness of order $1 / 2$. Also, we give some result concerning the radius of univalence of some linear invariant families.

Key Words: JB*-triple, linear invariant family, norm order

1 Introduction

Recently, several interesting results, concerning the norm-order of a linear invariant family and some connections with starlikeness, convexity and other geometric properties of holomorphic mappings in \mathbb{C}^{n}, were obtained by Pfaltzgraff and Suffridge [23]. Also they showed a number of growth, covering and distortion results for mappings that belong to a linear invariant family on the Euclidean unit ball in \mathbb{C}^{n}. Hamada and Kohr generalized the results in [23] to the unit ball in a complex Hilbert space in [9] and to the unit polydisc in [10]. For linear invariant families in several complex variables, see also the books $[3,4]$ and the references therein.

This paper is concerned with the study of linear invariance on the homogeneous ball of a complex Banach space. A complex Banach space is a JB*-triple if, and only if, its open unit ball is homogeneous. All four types of classical Cartan domains and their infinite dimensional analogues are the open unit balls of JB*-triples, and the same holds for any finite or infinite product of these domains ([13], see also [8, 15]). Thus the unit balls of JB*-triples are natural generalizations of the unit disc in \mathbb{C} and we have a setting in which a large number of bounded symmetric homogeneous domains may be studied simultaneously. We obtain
some connection between the norm-order of a linear invariant family and the starlikeness of order $1 / 2$. Also, we give some result concerning the radius of univalence of some linear invariant families.

2 Preliminaries

Let B be the unit ball in a complex Banach space X. Let Y be a complex Banach space. A holomorphic mapping $f: B \rightarrow Y$ is said to be locally biholomorphic if the Fréchet derivative $D f(x)$ has a bounded inverse for each $x \in B$. A holomorphic mapping $f: B \rightarrow Y$ is said to be biholomorphic if $f(B)$ is a domain in Y, f^{-1} exists and holomorphic on $f(B)$. A biholomorphic mapping $f: B \rightarrow Y$ is said to be convex if $f(B)$ is a convex domain. Let X^{*} be the dual space of X. For each $x \in X \backslash\{0\}$, we define

$$
T(x)=\left\{x^{*} \in X^{*}:\left\|x^{*}\right\|=1, x^{*}(x)=\|x\|\right\} .
$$

By the Hahn-Banach theorem, $T(x)$ is nonempty. Let $f: B \rightarrow X$ be a locally biholomorphic mapping. Let $\alpha \in \mathbb{R}$ with $0<\alpha<1$. We say that f is a starlike mapping of order α if
$\left|\frac{1}{\|x\|} x^{*}\left([D f(x)]^{-1} f(x)\right)-\frac{1}{2 \alpha}\right|<\frac{1}{2 \alpha}$
for $x \in B \backslash\{0\}, x^{*} \in T(x)$.
Let $L(X, Y)$ denote the set of continuous linear operators from X into Y. Let I_{X} be the identity in $L(X, X)$.

[^0]Let $\mathcal{L} S(B)$ denote the family of locally biholomorphic mappings from B to X, normalized by $f(0)=0$ and $D f(0)=I_{X}$.

We recall that a JB*-triple is a complex Banach space X together with a continuous mapping (called Jordan triple product)

$$
X \times X \times X \rightarrow X \quad(x, y, z) \mapsto\{x, y, z\}
$$

such that for all elements in X the following conditions $\left(\mathrm{J}_{1}\right)-\left(\mathrm{J}_{4}\right)$ hold, where for every $x, y \in X$, the operator $x \square y$ on X is defined by $z \mapsto\{x, y, z\}$:
$\left(\mathrm{J}_{1}\right)\{x, y, z\}$ is symmetric bilinear in the outer variable x, z and conjugate linear in the inner variable y,
$\left(\mathrm{J}_{2}\right)\{a, b,\{x, y, z\}\}$ $=\{\{a, b, x\}, y, z\}-\{x,\{b, a, y\}, z\}+\{x, y,\{a, b, z\}\}$,
(Jordan triple identity)
$\left(\mathrm{J}_{3}\right) x \square x \in L(X, X)$ is a hermitian operator with spectrum $\geqq 0$,
$\left(\mathrm{J}_{4}\right)\|\{x, x, x\}\|=\|x\|^{3}$.
It is known [16, p.523] that in this definition condition $\left(\mathrm{J}_{4}\right)$ can be replaced by $\|x \square x\|=\|x\|^{2}$ and that

$$
\|x \square y\| \leq\|x\| \cdot\|y\|
$$

holds for all $x, y \in X$. Then, we have

$$
\begin{equation*}
\|\{x, y, z\}\| \leq\|x\| \cdot\|y\| \cdot\|z\|, \quad \text { for all } x, y, z \tag{2.1}
\end{equation*}
$$

Example 2.1. Let S be a locally compact topological space and let $C_{0}(S)$ be the Banach space of all continuous complex valued functions f on S vanishing at infinity with $\|f\|=\sup |f(S)|$. Then $C_{0}(S)$ is a JB^{*}-triple with $\{f, g, h\}=f \bar{g} h$.

A linear subspace $I \subset X$ is called a subtriple if $\{I, I, I\} \subset I$.

For every $a \in X$, let $Q_{a}: X \rightarrow X$ be the conjugate linear operator defined by $Q_{a}(x)=\{a, x, a\}$. This operator is called the quadratic representation and it satisfies the fundamental formula

$$
Q_{Q_{a}(b)}=Q_{a} Q_{b} Q_{a}
$$

for all $a, b \in X$. For every $x, y \in X$, the Bergman operator $B(x, y) \in L(X, X)$ is defined by

$$
B(x, y)=I_{X}-2 x \square y+Q_{x} Q_{y} .
$$

From (2.1), we have

$$
\begin{equation*}
\|B(x, y)\| \leq(1+\|x\| \cdot\|y\|)^{2}, \quad x, y \in X \tag{2.2}
\end{equation*}
$$

In case $\|x \square y\|<1$, the spectrum of $B(x, y)$ lies in $\{z \in \mathbb{C}:|z-1|<1\}$. In particular, the fractional power $B(x, y)^{r} \in G L(X)$ exists for every $r \in \mathbb{R}$ in a natural way (cf. [16, p.517]).

Let B be the unit ball of a JB*-triple X. Then, for each $a \in B$, the Möbius transformation g_{a} defined by

$$
\begin{equation*}
g_{a}(x)=a+B(a, a)^{1 / 2}\left(I_{X}+x \square a\right)^{-1} x, \tag{2.3}
\end{equation*}
$$

is a biholomorphic mapping of B onto itself with $g_{a}(0)=a, g_{a}(-a)=0$ and $g_{-a}=g_{a}^{-1}$.
Proposition 2.2. Let g_{a} be as above. Then for any $a \in B, g_{a}$ extends biholomorphically to a neighborhood of \bar{B} and we have

$$
\begin{align*}
& {\left[D g_{a}(0)\right]^{-1} D^{2} g_{a}(0)(x, y)=-2\{x, a, y\},} \tag{2.4}\\
& \left\|D g_{a}(0)\right\| \leq 1, \tag{2.5}\\
& \left\|\left[D g_{a}(0)\right]^{-1}\right\|=\frac{1}{1-\|a\|^{2}}, \tag{2.6}\\
& D g_{\zeta a}(0)=D g_{a}(0), \quad|\zeta|=1, \tag{2.7}\\
& g_{a}(a)=\frac{2}{1+\|a\|^{2}} a, \tag{2.8}\\
& g_{a}(x)=x+a-\{x, a, x\}+O\left(\|a\|^{2}\right), \tag{2.9}\\
& {\left[D g_{a}(0)\right]^{-1}=I_{X}+O\left(\|a\|^{2}\right) .} \tag{2.10}
\end{align*}
$$

Moreover, we have

$$
\begin{align*}
& \frac{1}{1-\left\|g_{-z}(w)\right\|^{2}} \leq \frac{(1+\|w\| \cdot\|z\|)^{2}}{\left(1-\|w\|^{2}\right)\left(1-\|z\|^{2}\right)} \\
& z, w \in B \tag{2.11}
\end{align*}
$$

Proof. Since $\|x \square a\| \leq\|x\| \cdot\|a\|, g_{a}$ and $g_{a}^{-1}=g_{-a}$ extend holomorphically to $\|x\|<1 /\|a\|$. Then, g_{a} extends biholomorphically to a neighborhood of \bar{B}. Since

$$
\begin{aligned}
g_{a}(x) & =a+B(a, a)^{1 / 2}[x-(x \square a) x]+O\left(\|x\|^{3}\right) \\
& =a+B(a, a)^{1 / 2}[x-\{x, a, x\}]+O\left(\|x\|^{3}\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
D g_{a}(x)(y)= & B(a, a)^{1 / 2}[y-\{y, a, x\}-\{x, a, y\}] \\
& +O\left(\|x\|^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
D^{2} g_{a}(0)(y, z) & =B(a, a)^{1 / 2}[-\{y, a, z\}-\{z, a, y\}] \\
& =-2 B(a, a)^{1 / 2}\{y, a, z\} .
\end{aligned}
$$

Since $D g_{a}(0)=B(a, a)^{1 / 2}$, we obtain (2.4). By [17, Corollary 3.6], we obtain (2.5) and (2.6). Since

$$
B(\zeta a, \zeta a)=B(a, a), \quad|\zeta|=1
$$

we obtain (2.7). Since the JB*-subtriple of X generated by a, denoted by X_{a}, is isometrically isomorphic to $\mathcal{C}_{0}(S)$ for some locally compact subset $S \subset \mathbb{R}$ ([16]), it is easy to see that in X_{a} and hence in X, we have

$$
g_{a}(a)=\frac{2}{1+\|a\|^{2}} a
$$

Thus, we obtain (2.8). Since $B(a, a)^{1 / 2}=I_{X}+O\left(\|a\|^{2}\right)$, we have (2.10) and

$$
\begin{aligned}
g_{a}(x) & =a+B(a, a)^{1 / 2}[x-\{x, a, x\}]+O\left(\|a\|^{2}\right) \\
& =a+x-\{x, a, x\}+O\left(\|a\|^{2}\right) .
\end{aligned}
$$

Since

$$
\begin{equation*}
\frac{1}{1-\left\|g_{-z}(w)\right\|^{2}}=\left\|B(w, w)^{-1 / 2} B(w, z) B(z, z)^{-1 / 2}\right\| \tag{2.12}
\end{equation*}
$$

$z, w \in B$ by [19, Proposition 3.1], we obtain (2.11) from (2.2) and (2.6).
$x \in X$ is called regular if $x \square x \in G L(X)$ and $x \in X$ is called a tripotent if $\{x, x, x\}=x$. A point $u \in \bar{B}$ is said to be a real (resp. complex) extreme point of \bar{B} if the only $x \in X$ satisfying $\|u+\lambda x\| \leq 1$ for all real (resp. complex) numbers λ with $|\lambda| \leq 1$ is $x=0$. We call $u \in \bar{B}$ holomorphically extreme in \bar{B} if for every open neighborhood U of $0 \in \mathbb{C}$ and every holomorphic mapping $f: U \rightarrow X$ the conditions $f(0)=u$ and $f(U) \subset \bar{B}$ imply that $f^{\prime}(0)=0 . u \in \partial B$ is called a simple boundary point of B if $u+t y \in \partial B, y \in X, t \in \mathbb{C},|t|<1$ always implies $y=0$. The following result is obtained in Kaup and Upmeier [18, Proposition 3.5].
Proposition 2.3. Let B be the unit ball of a $J B^{*}$-triple X and $u \in X$. Then the following conditions are equivalent.
(i) u is a regular tripotent in X;
(ii) u is holomorphically extreme in \bar{B};
(iii) u is a complex extreme point of \bar{B};
(iv) u is a simple boundary point of B.

Let \mathcal{E} be the set of all complex extreme points of \bar{B}. As a corollary of the above proposition, we obtain the following maximum principle for holomorphic mappings on the unit ball of a JB*-triple. When B is the unit ball of a J^{*}-algebra, see Harris [13, Theorem 9]. By the Krein-Milman theorem (see e.g. [5, Chapter 4]),
it is known that if \bar{B} is a compact subset of X, then \mathcal{E} is nonempty.
Proposition 2.4. Let B be the unit ball of a $J B^{*}$-triple X and let \mathcal{E} denote the set of all complex extreme points of \bar{B}. If $\mathcal{E} \neq \varnothing$, then
(i) Let $g_{a} \in \operatorname{Aut}(B)$ given in (2.3). Then $g_{a}(\mathcal{E})=\mathcal{E}$ for any $a \in B$;
(ii) Let Ybe a complex Banach space. Let $f: B \rightarrow Y$ be a holomorphic mapping with a continuous and bounded extension to $B \cup \mathcal{E}$. Then

$$
\|f(x)\| \leq \sup \{\|f(u)\|: u \in \mathcal{E}\}, \quad x \in B .
$$

Moreover, f is completely determined by its value on \mathcal{E}.
Proof. (i) Since $g_{a}^{-1}=g_{-a}$, it suffices to show that $g_{a}(\mathcal{E}) \subset \mathcal{E}$ for any $a \in B$. Let $v=g_{a}(u)$, where $u \in \mathcal{E}$. Assume that $v+\lambda x \in \bar{B}$ for $|\lambda| \leq 1$. Let

$$
h(\lambda)=g_{a}^{-1}(v+\lambda x), \quad \lambda \in U
$$

Then h is holomorphic on U by Proposition 2.2, $h(0)=g_{a}^{-1}(v)=u$ and $h(U) \subset \bar{B}$. Since u is a holomorphic extreme point by Proposition 2.3, we must have $h^{\prime}(0)=0$. This implies that $D g_{a}^{-1}(v)(x)=0$. Since g_{a}^{-1} extends biholomorphically to a neighborhood of \bar{B}, we obtain $x=0$. Thus, $v \in \mathcal{E}$.
(ii) By the mean value property for vector valued holomorphic functions, we obtain

$$
f(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(g_{x}\left(e^{i \theta} u\right)\right) d \theta
$$

where $u \in \mathcal{E}$. Since $g_{x}\left(e^{i \theta} u\right) \in \mathcal{E}$ for $\theta \in[0,2 \pi]$ by (i), we obtain (ii).

3 Linear invariance in X

We define the notion of linear invariant families and the norm-order in the unit ball B of a complex Banach space X.
Definition 3.1. Let B be the unit ball of a complex Banach space X. Then a family \mathcal{F} is called a linearinvariant family if:
(i) $\mathcal{F} \subset \mathcal{L} S(B)$,
and
(ii) $\Lambda_{\phi}(f) \in \mathcal{F}$, for all $f \in \mathcal{F}$ and $\phi \in \operatorname{Aut} B$, where $\operatorname{Aut} B$ denotes the set of biholomorphic automorphisms of B, and $\Lambda_{\phi}(f)$ is the Koebe-transform

$$
\begin{equation*}
\Lambda_{\phi}(f)(x)=[D \phi(0)]^{-1}[D f(\phi(0))]^{-1}(f(\phi(x))-f(\phi(0))), \tag{3.1}
\end{equation*}
$$

for all $x \in B$.
Note that the Koebe transform has the group property $\Lambda_{\psi} \circ \Lambda_{\phi}=\Lambda_{\phi \circ \psi}$.

If \mathcal{F} is a linear invariant family, we define two types of norm-order of \mathcal{F} (cf.[23]), given by

$$
\| \text { ord } \|_{X, 1} \mathcal{F}=\sup _{f \in \mathcal{F}\|y\|=1}\left\{\frac{1}{2}\left\|D^{2} f(0)(y,)\right\|\right\}
$$

and

$$
\| \text { ord } \|_{X, 2} \mathcal{F}=\sup _{f \in \mathcal{F}} \sup _{\|y\|=1}\left\{\frac{1}{2}\left\|D^{2} f(0)(y, y)\right\|\right\} .
$$

It is clear that $\|\operatorname{ord}\|_{X, 1} \mathcal{F} \geq\|\operatorname{ord}\|_{X, 2} \mathcal{F}$. Since

$$
\begin{aligned}
& D^{2} f(0)(y, z) \\
= & \frac{1}{2}\left\{D^{2} f(0)(y+z, y+z)-D^{2} f(0)(y, y)\right. \\
& \left.-D^{2} f(0)(z, z)\right\},
\end{aligned}
$$

we obtain $\|\operatorname{ord}\|_{X, 1} \mathcal{F} \leq 3\|\operatorname{ord}\|_{X, 2} \mathcal{F}$. Moreover, if X is a Hilbert space, then $\|$ ord $\left\|_{X, 1} \mathcal{F}=\right\|$ ord $\|_{X, 2} \mathcal{F}$ by Hörmander [14, Theorem 4].

We now give some examples of linear invariant families in the unit ball B of a complex Banach space X. Example 3.2. $S(B)$, the set of all biholomorphic mappings in $\mathcal{L} S(B)$. If X is a complex Hilbert space of dimension n, where $n>1$, the linear invariant family $S(B)$ does not have finite norm order (see [23], cf. [1]).
Example 3.3. $\mathcal{U}_{\alpha}(B)$, the union of all linear invariant families contained in $\mathcal{L} S(B)$ with norm-order not greater than α. This is a generalization of the universal linear invariant families $\mathcal{U}_{\alpha}=\mathcal{U}_{\alpha}(\Delta)$ considered in [24].
Example 3.4. If \mathcal{G} is a nonempty subset of $\mathcal{L S}(B)$, then the linear invariant family generated by \mathcal{G} is the family

$$
\Lambda[\mathcal{G}]=\left\{\Lambda_{\phi}(g): g \in \mathcal{G}, \quad \phi \in \operatorname{Aut} B\right\}
$$

The linear invariance is a consequence of the group property of the Koebe transform. Obviously, $\Lambda[\mathcal{G}]=\mathcal{G}$ if and only if \mathcal{G} is a linear-invariant family. In the case of the unit Euclidean ball and the unit polydisc in \mathbb{C}^{n}, this example provided a useful technique for generating many interesting mappings (see [20, 21, 22]). For example, we can use a single mapping f from $\mathcal{L} S(B)$ to generate the linear invariant family $\Lambda[\{f\}]$. The family $\Lambda[\{i\}]$, generated by the identity mapping $i(x)=x$, consists of all the Koebe transforms of $i(x)$.
Example 3.5. $\mathcal{K}(B)$, the set of convex mapping in $\mathcal{L} S(B)$.

As in the proof of [23, Theorem 5.1], we obtain
the following result. We will see later that $\|\operatorname{ord}\|_{X, 2} \mathcal{K}(B)=1$, if B is the unit ball of a JB*-triple. We remark that if $X=\ell^{1}$ is the complex Banach space of summable complex sequences, then $\|$ ord $\|_{X, 2} \mathcal{K}(B)=0$, since the only mapping $f \in \mathcal{K}(B)$ is the identity mapping [26, Corollary 1].
Proposition 3.6. Let B be the unit ball of a complex Banach space X and let $\mathcal{K}(B)$ be the set of normalized convex mappings on B. Then $\|$ ord $\|_{X, 2} \mathcal{K}(B) \leq 1$.

When B is the unit ball of a JB^{*}-triple X, we have the following first order approximation formula for the Koebe transform of f.
Lemma 3.7. Let $g_{a} \in \operatorname{Aut}(B)$ given in (2.3). If $f \in$ $\mathcal{L} S(B)$, then

$$
\begin{aligned}
& {\left[D g_{a}(0)\right]^{-1}\left[D f\left(g_{a}(0)\right)\right]^{-1}\left(f\left(g_{a}(x)\right)-f\left(g_{a}(0)\right)\right) } \\
= & f(x)+D f(x)(a-\{x, a, x\})-a-D^{2} f(0)(a, f(x)) \\
+ & O\left(\|a\|^{2}\right), a \rightarrow 0 .
\end{aligned}
$$

Proof. Since

$$
f(x)=x+\frac{1}{2} D^{2} f(0)(x, x)+\frac{1}{6} D^{3} f(0)(x, x, x)+\cdots,
$$

we have

$$
\begin{equation*}
f\left(g_{a}(0)\right)=a+O\left(\|a\|^{2}\right), \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[D f\left(g_{a}(0)\right)\right]^{-1}=I_{X}-D^{2} f(0)(a, \cdot)+O\left(\|a\|^{2}\right) \tag{3.3}
\end{equation*}
$$

Since

$$
f(x+y)=f(x)+D f(x) y+O\left(\|y\|^{2}\right),
$$

we obtain from (2.9) that

$$
\begin{align*}
f\left(g_{a}(x)\right) & =f\left(x+a-\{x, a, x\}+O\left(\|a\|^{2}\right)\right) \\
& =f(x)+D f(x)(a-\{x, a, x\})+O\left(\|a\|^{2}\right) \tag{3.4}
\end{align*}
$$

From (2.10) and (3.3), we have

$$
\begin{align*}
& {\left[D g_{a}(0)\right]^{-1}\left[D f\left(g_{a}(0)\right)\right]^{-1} } \\
= & I_{X}-D^{2} f(0)(a, \cdot)+O\left(\|a\|^{2}\right) . \tag{3.5}
\end{align*}
$$

Then from (3.2), (3.4) and (3.5), we have

$$
\begin{aligned}
& {\left[D g_{a}(0)\right]^{-1}\left[D f\left(g_{a}(0)\right)\right]^{-1}\left(f\left(g_{a}(x)\right)-f\left(g_{a}(0)\right)\right) } \\
= & \left(I_{X}-D^{2} f(0)(a, \cdot)\right)[f(x)+D f(x)(a-\{x, a, x\})-a] \\
& +O\left(\|a\|^{2}\right) \\
= & f(x)+D f(x)(a-\{x, a, x\})-a-D^{2} f(0)(a, f(x)) \\
& +O\left(\|a\|^{2}\right) .
\end{aligned}
$$

This completes the proof.
The following useful result is a natural extension to JB*-triples of [24, Lemma 1.2] (cf. [9, 10, 21]).
Lemma 3.8. Let \mathcal{F} be a linear-invariant family on the unit ball B of a $J B^{*}$-triple X with $\|$ ord $\|_{X, 1} \mathcal{F}=\alpha$ and $\|$ ord $\|_{X, 2} \mathcal{F}=\beta$. Then

$$
\begin{array}{r}
\alpha=\sup _{f \in \mathcal{F}} \sup \left\{\left\|\frac{1}{2} \Phi(f, x, y, z)-\{y, x, z\}\right\|:\right. \\
\|x\|<1,\|y\|=\|z\|=1\}, \tag{3.6}
\end{array}
$$

and

$$
\begin{gather*}
\beta=\sup _{f \in \mathcal{F}} \sup \left\{\left\|\frac{1}{2} \Phi(f, x, y, y)-\{y, x, y\}\right\|:\right. \\
\|x\|<1,\|y\|=1\}, \tag{3.7}
\end{gather*}
$$

where

$$
\begin{aligned}
& \Phi(f, x, y, z) \\
& \quad=\left[D g_{x}(0)\right]^{-1}[D f(x)]^{-1} D^{2} f(x)\left(D g_{x}(0) y, D g_{x}(0) z\right)
\end{aligned}
$$

Proof. It is clear that

$$
\begin{aligned}
& \sup _{f \in \mathcal{F}} \sup \left\{\left\|\frac{1}{2} \Phi(f, x, y, z)-\{y, x, z\}\right\|:\right. \\
& \|x\|<1,\|y\|=\|z\|=1\} \geq \alpha .
\end{aligned}
$$

On the other hand, let $f \in \mathcal{F}$ and $\phi=g_{x}$ where $x \in B$. It is clear that $F \in \mathcal{F}$, where $F(w)=\Lambda_{\phi}(f)(w)$, $w \in B$. Therefore, we have

$$
\begin{equation*}
\left\|\frac{1}{2} D^{2} F(0)(y, z)\right\| \leq \alpha, \quad y, z \in X,\|y\|=\|z\|=1 . \tag{3.8}
\end{equation*}
$$

If we differentiate twice the mapping $F=\Lambda_{\phi}(f)$, given by (3.1), we obtain that

$$
D F(w)=[D \phi(0)]^{-1}[D f(\phi(0))]^{-1} D f(\phi(w)) D \phi(w)
$$

$$
\begin{aligned}
w \in & B, \text { and } \\
& D^{2} F(w)(y, z) \\
= & {[D \phi(0)]^{-1}[D f(\phi(0))]^{-1}\left\{D^{2} f(\phi(w))(D \phi(w) y, D \phi(w) z)\right.} \\
& \left.+D f(\phi(w)) D^{2} \phi(w)(y, z)\right\}, \quad y, z \in X .
\end{aligned}
$$

Evaluating at $w=0$, we obtain that

$$
\begin{aligned}
& D^{2} F(0)(y, z) \\
= & \Phi(f, x, y, z)+\left[D g_{x}(0)\right]^{-1} D^{2} g_{x}(0)(y, z)
\end{aligned}
$$

Hence, from (2.4) and this equality, we have

$$
D^{2} F(0)(y, z)=\Phi(f, x, y, z)-2\{y, x, z\} .
$$

Finally, from (3.8) and the last relation, one concludes that

$$
\left\|\frac{1}{2} \Phi(f, x, y, z)-\{y, x, z\}\right\| \leq \alpha,
$$

for all $x \in B$ and $y, z \in X,\|y\|=\|z\|=1$. Thus, we obtain (3.6). Putting $z=y$ in the above argument, we obtain (3.7). This completes the proof.

Note that in the case of one complex variable, the relations (3.6) and (3.7) are equivalent to

$$
\alpha=\beta=\sup _{f \in \mathcal{F}} \sup _{|b|<1}\left|\frac{1}{2}\left(1-|b|^{2}\right) \frac{f^{\prime \prime}(b)}{f^{\prime}(b)}-\bar{b}\right| .
$$

(compare with [24, Lemma 1.2]).
Pfaltzgraff and Suffridge [23, Theorem 3.1] proved recently that if \mathcal{M} is a linear invariant family on the Euclidean unit ball of \mathbb{C}^{n}, then $\|\operatorname{ord}\| \mathcal{M} \geq 1$. Hamada and Kohr obtained the extension of this result to the unit ball of a complex Hilbert space in [9, Theorem 3.2] and to the unit polydisc in [10, Theorem 3.2]. In the following we obtain the extension of this result to the unit ball of a JB*-triple.

Theorem 3.9. Let \mathcal{F} be a linear invariant family on the unit ball B of a $J B^{*}$-triple X. Then $\|$ ord $\|_{X, 2} \mathcal{F} \geq 1$. Proof. We will use an argument similar to that in the proof of [23, Theorem 3.1]. Let $\beta=\|\operatorname{ord}\|_{X, 2} \mathcal{F}$ and let $x \in B \backslash\{0\}$ be fixed. Putting $y=\frac{x}{\|x\|}, x \in B \backslash\{0\}$, in (3.7), we obtain that

$$
\beta \geq\left\|\frac{1}{2\|x\|^{2}} \Phi(f, x, x, x)-\frac{1}{\|x\|^{2}}\{x, x, x\}\right\|,
$$

where

$$
\begin{aligned}
& \Phi(f, x, x, x) \\
= & {\left[D g_{x}(0)\right]^{-1}[D f(x)]^{-1} D^{2} f(x)\left(D g_{x}(0) x, D g_{x}(0) x\right) . }
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\beta \geq\left|\frac{1}{2\|x\|^{2}} z^{*}(\Phi(f, x, x, x)-2\{x, x, x\})\right|, \tag{3.9}
\end{equation*}
$$

where $z^{*} \in T(\{x, x, x\})$. Further, let

$$
h(\zeta)=\frac{\zeta}{2\|x\|^{2}} z^{*}(\Psi(f, \zeta, x)), \quad|\zeta|<\frac{1}{\|x\|}
$$

where

$$
\begin{aligned}
& \Psi(f, \zeta, x) \\
= & {\left[D g_{x}(0)\right]^{-1}[D f(\zeta x)]^{-1} D^{2} f(\zeta x)\left(D g_{x}(0) x, D g_{x}(0) x\right) . }
\end{aligned}
$$

Then h is a holomorphic function on $|\zeta|<1 /\|x\|$ and by (2.7)

$$
\Phi(f, \zeta x, \zeta x, \zeta x)=\zeta^{2} \Psi(f, \zeta, x),|\zeta|=1
$$

Since $h(0)=0$, for every r with $r<1 /\|x\|$, there exists a value of ζ with $|\zeta|=r$ such that $\operatorname{Re} h(\zeta) \leq 0$.

We now replace x by ζx and z^{*} by $\frac{\bar{\zeta}}{|\zeta|} z^{*}$ in (3.9), where $|\zeta|=1$ so that $\operatorname{Reh}(\zeta) \leq 0$. Then we deduce that

$$
\beta \geq\left|h(\zeta)-\frac{\|x\|^{3}}{\|x\|^{2}}\right| \geq-\Re h(\zeta)+\|x\| \geq\|x\|
$$

because we have used the fact that $\operatorname{Reh}(\zeta) \leq 0$. Hence, $\beta \geq\|x\|$ for all $x \in B$. Therefore $\|$ ord $\|_{X, 2} \mathcal{F} \geq 1$. This completes the proof.

As a corollary of Proposition 3.6 and Theorem 3.9, we obtain the following result (cf. [23, Theorem 5.1]). Corollary 3.10. Let B be the unit ball of a JB*-triple X and let $\mathcal{K}(B)$ be the set of normalized convex mappings on B. Then $\|$ ord $\|_{X, 2} \mathcal{K}(B)=1$.

Next, we give a result on a lower bound for starlikeness. Hamada and Kohr [11] (cf. [12]) proved the following sufficient condition for starlikeness on the unit ball of a complex Banach space.
Proposition 3.11. Let f be a locally biholomorphic mapping on the unit ball B of a complex Banach space with $f(0)=0$. If

$$
\left\|[D f(x)]^{-1} D^{2} f(x)(x, \cdot)\right\| \leq 1, \quad x \in B
$$

then f is a starlike mapping of order $1 / 2$ on B.
Using the above sufficient condition, we will prove the following theorem (cf. [23, Theorems 5.5 and 5.7]). Theorem 3.12. Let \mathcal{F} be a linear-invariant family on the unit ball B of a JB*-triple X with $\|$ ord $\|_{X, 1} \mathcal{F}=\alpha<\infty$. If $f \in \mathcal{F}$, then f is a starlike mapping of order $1 / 2$ on $B_{r_{s}}$, where $r_{s} \in(0,1)$ is the unique solution of the equation

$$
\frac{2 r^{2}+2 \alpha r}{\left(1-r^{2}\right)^{2}}=1
$$

Proof. From Lemma 3.8,

$$
\begin{aligned}
& \left\|[D f(x)]^{-1} D^{2} f(x)\left(D g_{x}(0) y, D g_{x}(0) z\right)\right\| \\
\leqq & 2\left\|D g_{x}(0)\{y, x, z\}\right\|+2 \alpha\left\|D g_{x}(0)\right\| \cdot\|y\| \cdot\|z\|
\end{aligned}
$$

Also, we have $\left\|D g_{x}(0)\right\| \leq 1$ and $\left\|\left[D g_{x}(0)\right]^{-1}\right\| \leq 1 /$ (1-\|x\|2) from (2.5) and (2.6). Therefore, putting $y=\left[D g_{x}(0)\right]^{-1} x$ and $z=\left[D g_{x}(0)\right]^{-1} w$ with $\|w\|=1$ and using (2.1), we obtain that

$$
\begin{aligned}
& \left\|[D f(x)]^{-1} D^{2} f(x)(x, w)\right\| \\
\leqq & 2\left\|D g_{x}(0)\right\| \cdot\left\|\left[D g_{x}(0)\right]^{-1} x\right\| \cdot\|x\| \cdot\left\|\left[D g_{x}(0)\right]^{-1} w\right\| \\
& +2 \alpha\left\|D g_{x}(0)\right\| \cdot\left\|\left[D g_{x}(0)\right]^{-1} x\right\| \cdot\left\|\left[D g_{x}(0)\right]^{-1} w\right\| \\
\leqq & \frac{2 r^{2}+2 \alpha r}{\left(1-r^{2}\right)^{2}}
\end{aligned}
$$

where $r=\|x\|$. From Proposition 3.11, f is a starlike mapping of order $1 / 2$ on $B_{r_{s}}$. This completes the proof.

Before to give the following result, we have to introduce some notations, as follows. This result relates the radius of univalence of a linear invariant family with the radius of nonvanishing of this family.

Let

$$
\begin{aligned}
r_{0} & =r_{0}(\mathcal{F}) \\
& =\sup \{r>0: f(x) \neq 0,0<\|x\|<r, f \in \mathcal{F}\}
\end{aligned}
$$

and let $r_{1}=r_{1}(\mathcal{F})$ denote the radius of univalence of the linear invariant family F, i.e.

$$
r_{1}=\sup \left\{r>0: f \text { is univalent on } B_{r}, f \in \mathcal{F}\right\} .
$$

Then, we obtain the following result. This result is a generalization of [24, Lemma 2.4], [23, Theorem 5.11], [9, Theorem 3.4] and [10, Theorem 3.5] to the unit ball of a JB*-triple. We remark that if $\|$ ord $\|_{X, 1} \mathcal{F}=\alpha<\infty$, then $r_{0}>0$ from Theorem 3.12.
Theorem 3.13. Let \mathcal{F} be a linear invariant family on the unit ball B of a $J B^{*}$-triple X. Assume that $r_{0}(\mathcal{F})>0$. Then

$$
r_{1}=\frac{r_{0}}{1+\sqrt{1-r_{0}^{2}}}
$$

Proof. Let $f \in F$ and $r \leq \frac{r_{0}}{1+\sqrt{1-r_{0}^{2}}}$. Also, let $y, z \in B_{r}$ with $y \neq z$. Let

$$
\begin{align*}
& F(w ; x) \\
= & {\left[D g_{x}(0)\right]^{-1}\left[D f\left(g_{x}(0)\right)\right]^{-1}\left(f\left(g_{x}(w)\right)-f\left(g_{x}(0)\right)\right), } \tag{3.10}
\end{align*}
$$

$w, x \in B$, where g_{x} is the biholomorphic automorphism
of B, given in (2.3). Clearly, $F(\cdot ; x) \in \mathcal{F}$, for all $x \in B$, and if we set $x=y$ and $w=g_{y}^{-1}(z)$ in (3.10), we obtain that

$$
\begin{align*}
& F\left(g_{y}^{-1}(z) ; y\right) \\
= & {\left[D g_{y}(0)\right]^{-1}[D f(y)]^{-1}(f(z)-f(y)) } \tag{3.11}
\end{align*}
$$

From (2.11), we obtain

$$
1-\left\|g_{-y}(z)\right\|^{2} \geq \frac{\left(1-\|y\|^{2}\right)\left(1-\|z\|^{2}\right)}{(1+\|y\| \cdot\|z\|)^{2}}>\frac{\left(1-r^{2}\right)^{2}}{\left(1+r^{2}\right)^{2}}
$$

Therefore, we have

$$
\left\|g_{y}^{-1}(z)\right\|=\left\|g_{-y}(z)\right\|<\frac{2 r}{1+r^{2}} \leq r_{0}
$$

Since $g_{y}^{-1}(z) \neq 0$ for $y \neq z$, we have $F\left(g_{y}^{-1}(z) ; y\right) \neq 0$. Then, we conclude from (3.11) that $f(y) \neq f(z)$, that means f is univalent on B_{r}. Therefore, $r_{1} \geq \frac{r_{0}}{1+\sqrt{1-r_{0}^{2}}}$. Also, since $r_{0}>0$, we deduce that $r_{1}>0$.

In the second part of this proof, we will show that $r_{1} \leq \frac{r_{0}}{1+\sqrt{1-r_{0}^{2}}}$. To this end, let $x \in B$ with $0<\|x\|<$ $\frac{2 r_{1}}{1+r_{1}^{2}}$. Then there exists $a \in B$ such that $x=g_{a}(a)$ and $0<\|a\|<r_{1}$ by (2.8). After short computations, we obtain the following relations

$$
F(a ; a)=\left[D g_{a}(0)\right]^{-1}[D f(a)]^{-1}(f(x)-f(a))
$$

and

$$
F(-a ; a)=-\left[D g_{a}(0)\right]^{-1}[D f(a)]^{-1} f(a)
$$

where F is defined by (3.10). Therefore, we have

$$
f(x)=D f(a) D g_{a}(0)(F(a ; a)-F(-a ; a))
$$

Since $0<\|a\|<r_{1}, F(a ; a) \neq F(-a ; a)$. Hence, $f(x) \neq 0$. This implies that $r_{0} \geq \frac{2 r_{1}}{1+r_{1}^{2}}$. This is equivalent to $r_{1} \leq \frac{r_{0}}{1+\sqrt{1-r_{0}^{2}}}$. This completes the proof.
Corollary 3.14. Let \mathcal{F} be a linear invariant family on the unit ball B of a JB**-triple X. Assume that $r_{0}(\mathcal{F})=1$. Then \mathcal{F} is a family of normalized univalent mappings on B.

References

[1] R.W. Barnard, C.H. FitzGerald, S. Gong, A distor-
tion theorem for biholomorphic mappings in \mathbb{C}^{2}, Trans. Amer. Math. Soc. 344 (1994) 907-924.
[2] C-H. Chu, H. Hamada, T. Honda, G. Kohr, Distortion theorems for convex mappings on homogeneous balls, J. Math. Anal. Appl. 369 (2010) 437442.
[3] S. Gong, Convex and Starlike Mappings in Several Complex Variables, Mathematics and its Applications (China Series), 435. Kluwer Academic Publishers, Dordrecht; Science Press, Beijing, 1998.
[4] I. Graham, G. Kohr, Geometric function theory in one and higher dimensions, Monographs and Textbooks in Pure and Applied Mathematics, 255. Marcel Dekker, Inc., New York, 2003.
[5] D.J. Hallenbeck, T.H. MacGregor, Linear Problems and Convexity Techniques in Geometric Function Theory, Pitman, Boston, 1984.
[6] H. Hamada, T. Honda, Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables, Chin. Ann. Math. Ser. B 29 (2008) 353-368.
[7] H. Hamada, T. Honda, G. Kohr, Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation, J. Math. Anal. Appl. 317 (2006) 302-319.
[8] H. Hamada, T. Honda, G. Kohr, Bohr's theorem for holomorphic mappings with values in homogeneous balls, Israel J. Math. 173 (2009) 177-187.
[9] H. Hamada, G. Kohr, Linear invariance of locally biholomorphic mappings in Hilbert spaces, Complex Var. Theory Appl. 47 (2002) 277-289.
[10] H. Hamada, G. Kohr, Linear invariant families on the unit polydisc, Mathematica (Cluj) 44(67), No. 2 (2002) 153-170.
[11] H. Hamada, G. Kohr, Simple criterions for strongly starlikeness and starlikeness of certain order, Math. Nachr. 254-255 (2003) 165-171.
[12] H. Hamada, G. Kohr, P. Liczberski, Starlike mappings of order α on the unit ball in complex Banach spaces, Glas. Mat. Ser. III 36(56) (2001) 39-48.
[13] L.A. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces, in: T.L. Hayden, T.J. Suffridge (Eds.), Proceedings on Infinite Dimensional Holomorphy, Internat. Conf., Univ. Kentucky, Lexington, KY, 1973, in: Lecture

Notes in Mathematics, Vol. 364, Springer, Berlin, 1974, pp. 13-40.
[14] L. Hörmander, On a Theorem of Grace, Math. Scand. 2 (1954) 55-64.
[15] L.K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, Translations of Mathematical Monographs, vol. 6, American Mathematical Society, Providence, RI, 1963.
[16] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in Banach spaces, Math. Z. 183 (1983) 503-529.
[17] W. Kaup, Hermitian Jordan triple systems and the automorphisms of bounded symmetric domains, Non-associative algebra and its applications (Oviedo, 1993), 204-214, Math. Appl., 303, Kluwer Acad. Publ., Dordrecht, 1994.
[18] W. Kaup, H. Upmeier, Jordan algebras and symmetric Siegel domains in complex Banach spaces, Math. Z. 157 (1977) 179-200.
[19] P. Mellon, Holomorphic invariance on bounded symmetric domains, J. Reine Angew. Math. 523
(2000) 199-223.
[20] J.A. Pfaltzgraff, Distortion of locally biholomorphic maps of the n-ball, Complex Var. Theory Appl. 33 (1997) 239-253.
[21] J.A. Pfaltzgraff, T.J. Suffridge, Linear invariance, order and convex maps in \mathbb{C}^{n}, Complex Var. Theory Appl. 40 (1999) 35-50.
[22] J.A. Pfaltzgraff, T.J. Suffridge, An extension theorem and linear invariant families generated by starlike maps, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 53 (1999) 193-207.
[23] J.A. Pfaltzgraff, T.J. Suffridge, Norm order and geometric properties of holomorphic mappings in \mathbb{C}^{n}, J. Anal. Math. 82 (2000) 285-313.
[24] C. Pommerenke, Linear-invariante familien analytischer funktionen I, Math. Ann. 155 (1964) 108154.
[25] C. Pommerenke, Linear-invariante familien analytischer funktionen II, Math. Ann. 156 (1964) 226262.
[26] T.J. Suffridge, Starlike and convex maps in Banach spaces, Pacific J. Math. 46 (1973), 575-589.

[^0]: * Department of Architectural Engineering, Hiroshima Institute of Technology

