MRAS によるロボットの動力学的制御 に関する一考察*

川 辺 尚 志**·吉 田 和 信**

(昭和61年9月29日受理)

A Consideration of Dynamic Control of Robotics Manipulators Using MRAS*

Hisashi KAWABE** and Kazunobu YOSHIDA**

(Received Sept. 29, 1986)

The effectiveness of the model-referenced adaptive control system (MRAS) developed by Dubowsky et al. has been investigated from the simulation analysis of the systems using such dynamic models as a simple linear 2nd-order type manipulator, a single degree-of-freedom linkage type one, and a 2-degree-of freedom polar coordinate type one.

When the tuning gains for the adaptive control of manipulator dynamics, K_p and K_v , are initially set at their ideal values, good performance of MRAS can be obtained over a wide range of configulational motions and inertia paylords, whether there is the nonlinear complex and coupled nature of the manipulator dynamics or not.

Simulation results show that the practical limitation of the MRAS algorithmus in high speed manipulator applications lies in *P* (normalized frequency) ≤ 2 , and also that the offset due to the gravity effect can be improved by adding the I-action parallel to the K_p (position gain).

The applications of the MRAS concept to so called automatic-tuning process control can be sufficiently expected in the sense that good settings of the parameters (feedback gains) are possible without the complex identification system about processes.

Key words: model-referenced adaptive control system, linkage-type manipulator, polar coordinate type manipulator, feedback gain, paylord, simulation, integral-action.

1. 緒 言

最近のロボット運動制御に見られるように,生産性 向上からの要求により機械運動の高速化・高精度化の ための動力学的制御が注目されている¹⁾。

多自由度ロボットアーム系は幾何学的にも力学的に も複雑な干渉系であり、その運動はコリオリカを含む 非線形方程式で記述される。その上、姿勢変化に伴う 負荷変動を生ずる²⁾。こうした可変パラメータの非線 形干渉運動系に対する有効な制御法の一つが柔軟な制 御動作をもつソフトウェア・サーボ³⁾である。信頼性 ある機構運動の高速化には,機械系の動特性を駆動源 側に効率的に反映させることが重要であり,こうした 面からの高速演算アルゴリズムの開発が期待される⁴⁾。 高速運動のためのソフトウェア・サーボとしては, モデル規範型適応制御(MRAS)⁶⁾,スライディング・

** 機械工学科

^{*} 昭和61年10月7日,日本機械学会第64期全国大会講演会(山口大学工学部)にて発表。

Fig. 1 Adaptive control system block diagram developed by Dubowsky?).

モード制御⁶),最短時間制御⁵⁾の各方式が挙げられる が,本報では特に Dubowsky⁷⁾により提案された MRAS のアルゴリズムについて,その実用性(適応 制御性)を関節型マニピュレータへの適用例で周波数 応答性および過渡応答性の両面よりシミュレーション を通して検討してみた。また2自由度極座標型ロボッ トシステムの事例で慣性負荷変動や非線形力の影響に ついても考察してみる。

2. MRAS 演算原理

Dubowsky の提案した MRAS ブロック線図を図1 に示す。この演算原理は、次式に示す線形2次系

 $a\ddot{y}+b\dot{y}+y=r(t) \tag{1}$

に設定した規準モデルの出力特性(モデル特性は, $a=1/\omega_n^2$ および $b=2\zeta/\omega_n$ であるので,固有角振動数 ω_n と減衰係数比 ζ の2パラメータで規定される)y, y, yに,次式で示される

$$\{\underbrace{\mathcal{M}/\mathcal{K}_{m}\cdot\mathcal{K}_{p}(t)}_{\alpha (t)}\}\ddot{x} + \{\underbrace{\mathcal{K}_{v}(t)/\mathcal{K}_{p}(t)}_{\beta (t)}\}\dot{x} + x = r(t) (2)$$

制御対象(この場合,慣性項*M*,駆動トルク*K*_mとしたマニピュレータ)の動特性出力*x*, *x*, *x* を一致させるよう(すなわち $\delta_1 = \alpha(t) - a \rightarrow 0, \delta_2 = \beta(t) - b \rightarrow 0$),速度フィードバックおよびフィードフォワードゲイン(*K*_v(*t*), *K*_b(*t*))を調節することにある。

その調節則は、修正誤差 $\varepsilon(t) = y(t) - x(t)$ とその微 分量 (ε, ε) からなる 2 次の誤差関数

$$f(\boldsymbol{\varepsilon}) = (q_0 \boldsymbol{\varepsilon} + q_1 \dot{\boldsymbol{\varepsilon}} + q_2 \ddot{\boldsymbol{\varepsilon}})^2 / 2 \tag{3}$$

を最小化するために、 $f(\varepsilon)$ 面上 ($f(\varepsilon)$ は δ_1, δ_2 の関数 でもある)を次式で示す最大傾斜の勾配ベクトル

$$\dot{\alpha} = -\frac{\partial f}{\partial \alpha} = \frac{\partial f}{\partial a}$$

$$\dot{\beta} = -\frac{\partial f}{\partial \beta} = \frac{\partial f}{\partial b}$$

$$(4)$$

で減少降下することに立脚しており,規準モデルの出力(-y,-y)より次式に従って

$$\begin{array}{c} a\ddot{u} + b\dot{u} + u = -\ddot{y} \\ a\ddot{w} + b\dot{w} + w = -\dot{y} \end{array}$$

$$(5)$$

適応制御基本量 $u(=\partial y/\partial a)$, \dot{u} , \ddot{u} および $w(=\partial y/\partial b)$, \dot{w} , \ddot{w} を演算することが, このアルゴリズムの特徴で ある⁸⁾。

状態方程式で MRAS を記述すると、次のように機

能を特徴的に分離できる。

$$\dot{z} = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1/a - b/a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1/a & b/a - 1/a - b/a & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & -1/a & 0 & 0 - 1/a - b/a & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\dot{\alpha}/a
\end{bmatrix}$$

$$+ \begin{bmatrix}
0 \\
1/a \\
0 \\
-1/a \\
0 \\
0 \\
K_{\mu}\dot{\beta}
\end{bmatrix}$$

$$(6)$$

また可変ゲインを含むダイナミクス部は

- Fig. 2 Dynamics response X to reference model output Y, position and velocity feedback gains K_p and K_v and adaptive tracking parameters α and β .
 - (a) Response for K_{vs} (initial value of K_v)=2[s].
 - (b) That for $K_{vs} = 3[s]$.

$$\begin{split} \dot{\mathbf{x}} &= \begin{bmatrix} 0 & 1 \\ -K_m \cdot K_p / M & -K_m K_v / M \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ K_m K_p / M \end{bmatrix} \mathbf{r}(t) \quad (7) \\ \mathbf{z} &= \{y_1, y_2, u_1, u_2, w_1, w_2, K_P, K_v\}^T \\ \mathbf{x} &= \{x_1, x_2\}^T \end{cases}$$
(8)

この制御方式の特徴は、図1から分るように制御対象を同定することなく、マクロ的には状態フィードバックゲイン (K_p , K_v)の調節で最適適応させることにあるので、オフラインシステム用の最適レギュレー g^{9} に対して、一種の動的レギュレータ制御といえる。

3. 結果および考察

3.1 線形1自由度系に対する適応制御性

3.1.1 定形波入力に対する適応制御性

図2は、ルンゲクッタ法により規準モデルパラメー タを $\zeta=1$, $\omega_n=1$ [rad/s] (従って a=1[s²], b=2[s²]) に設定した場合,矩形波入力r(t) に対する規準モデ ルと線形2次マニピュレータの応答解析結果を示す。 但し、負荷慣性 $M=1[kg\cdot m^2]$ 、モータ出力トルク K_m =1[kgf·m]とする。図中の $K_{b}(t), K_{v}(t)$ は可変ゲイ ンの時間依存性を、 α および β はパラメータa, bに対 するダイナミクス側の適応係数の時間依存性を示す。 同図(a)は $K_{v}=1, K_{v}=2[s]$ に初期設定した場合の制御 応答で完全適応状態を示す。このことは、マニピュレー タ側特性(式(2))と規準モデル特性(式(1))におい て、 $a=\alpha=M/(K_m\cdot K_b)=1(s^2)$ 、および $b=\beta=K_v/K_b$ =2[s] でパラメータ相互間が理想的に一致すること から理解されうる。同図(b)は、 $K_p=1, K_v=3[s]$ に初 期設定した場合で、(a)に比べると過渡状態で y-x 間 に多少のずれがみられる。また、注目すべきは、 $\alpha \simeq 0.93$, $\beta \simeq 2.7$, $f \approx b + \delta_1 = a - \alpha = 0.07 (s^2)$, δ_2 =b-β=-0.7[s] で多少のずれがあっても適応しう ることである。本例のように K, の初期値を増せばマ ニピュレータ側の応答が遅れ、逆に減らすと進む傾向 が見られ、過渡応答における適応制御性は K,, K,の 初期値に強く依存することが分る。

図3は台形波入力に対する制御応答で,同図(a)は $a=\alpha=1[s^2], b=\beta=2[s]$ に可変ゲインを初期設定し た場合で ($K_p=1, K_v=2[s]$),図2(a)と同様完全適応 状態を示す。同図(b)は $K_p=1, K_v=3[s]$ に初期設定し た場合で,図2(b)と同様パラメータ間に多少のずれが あっても ($\delta_1=a-\alpha\simeq0, \delta_2=b-\beta=-0.6[s]$)最終的 には適応していることが分る。

3.1.2 周波数入力に対する MRAS の適応制御性

次に $r(t)=0.5 \sin pt$ (無次元周波数 $p=\omega/\omega_n$)の正 弦波入力に対する適応制御性を検討する。

Fig. 3 Dynamics response X to reference model output Y, position and velocity feedback gains K_p and K_v, and adaptive tracking parameters α and β.
(a) Response for K_{vs}=2[s]. (b) That for K_{vs}=3[s].

図4(a)は $K_p=1, K_v=1(s), \zeta=1, p=0.5$ に関する結果 であり、この場合規準モデル応答y(t)に比べてダイ ナミクス応答x(t)の方が位相に進み、振幅 |X|も若 干大きくなっている。同図(b)は、p=1(共振下)に関 する結果でy-x間の位相差はあまり見られないが、 振幅間は $|X| \simeq 2|Y|$ の状態である。同図(c)はp=6の過共振領域の結果で、モデル側のゲイン低下のため ダイナミクス側も殆んど応答出力のない状態である。

図5は, $a=1[s^2]$,b=1[s](すなわち $\omega_n=1[rad/s]$, $\zeta=0.5$), $K_p=1$, $K_v=1(s)$, $M=1[kg\cdot m^2]$, K_m $=1[kgf\cdot m]$, 誤差関数重み係数を, $q_0=2$, $q_1=1[s]$, $q_2=2[s^2]$ とした場合の適応制御性を $p=0.1\sim10$ の範 囲で調べた結果を示す。周波数入力に対する適応制御 性を評価するパラメータとして, X/Y(規準モデル出 力振幅 Y に対するダイナミクス側出力振幅 X の比), $\zeta X/Y$ (モデル側とダイナミクス側位相差), $e^2=$ $\int_0^T (Y-X)^2 dt$ (1周期における2乗制御面積),および $\alpha(t)=M/(K_m\cdot K_p(t))$, $\beta(t)=K_v(t)/K_p(t)$ を用いた。

Fig. 4 Frequency response X to sinusoidal reference model output Y as a parameter of normalized frequency p.

X/Y特性に関しては、 $\zeta=1$ の場合(図5)に低pおよび高p領域でX/Y=1をとり、p=1付近で凸型 の関数特性(図6の $\zeta=0.35$ の場合には凹型)を示す

Fig. 5 Frequency characteristics of adaptive parameters e^2 , X/Y, $\angle X/Y$, α and β for $\zeta = 1$.

Fig. 6 Frequency characteristics of e^2 , X/Y, $\angle X/Y$, α and β for $\zeta = 0.35$.

Fig. 7 (a) 1-degree-of-freedom-linkage manipulator.

(b) Its adaptive control system block diagram.

のは規準モデルとダイナミクス側との応答敏感さの差 に起因すると考えられる。

 e^2 特性に関しては, p=1 付近で大きな値をとるの は、 $\angle X/Y$ および X/Y特性に関する説明から明らか である。 α, β 特性に関しては、低 p および高 p 領域で は $\alpha=1$, $\beta=1$ に一致し、その中間領域で多少の変動 幅が見られる。

いずれにせよ,図4(c)に示すように $p \leq 2$ では規準 モデルのゲインが急激に低下するので,2次系モデル の性質より $0 \leq p \leq 2$ の範囲でこのMRASは実用的と 考えられる。規準モデルが $\omega_n \ge 1$ に設定した場合で も同様のことが予測されるが,実システムにおける操 作量の飽和性の問題や総演算処理時間等が周波数適応 性の現実的限界を与えるものと考えられる。

なお $K_p=1, K_p=2[s]$ の理想条件に設定した場合に は、当然のことながら全p 領域にわたり $\alpha=1$, $\beta=2, \angle X/Y=1, e^2=0$ の完全適応制御性が得られた。

3.2 1関節リンクへの応用

以上の点をふまえて、次に図7(a)に示す1関節リン クの姿勢 $\theta(t)$ の MRAS による制御性の問題について 検討してみる。操作量u(t)(関節部での制御トルクに 相当)に関する系の運動方程式は、軸O回りの慣性モー メントを $I=4/3 \cdot m^{p}$, ダンピング係数をDとすると き

Fig. 8 Variation of adaptive control response z_1 for the linkage type robot as a parameter of gravity effect m.

$$\begin{bmatrix} \dot{z}_1\\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} \dot{\theta}\\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 1\\ 0 & -D/I \end{bmatrix} \begin{bmatrix} z_1\\ z_2 \end{bmatrix} + \begin{bmatrix} 0\\ mlg/I \cdot \sin z_1 \end{bmatrix} + \begin{bmatrix} 0\\ 1/I \end{bmatrix} u(t)$$
(9)

となり、重力項 $g \sin z_1$ に関する非線形式方程式となる。この式で記述されるダイナミスクを、上述の MRAS を適用することにより制御する場合のブロック線図を同図(b)に示す。 $a_{22} = -D/I, b_2 = mgl/I \cdot \sin z_1, c_2 = 1/I$ はダイナミクス特性のパラメータであり、可変ゲイン $K_p(t), K_v(t)$ はMRASよりの出力値を示す。

図8に, $a=1[s^2]$,b=1[s],2l=1[m], $I=1[kg\cdot m^2]$ に設定し、リンク質量 m を変えた場合の制御応答を示す。同図(a)は m=0、すなわち重力項を完全に無視した線形系の場合であるので、適応制御は当然可能である。しかし、同図(b)、(c)に示すように、m=0.2 kg、 0.5 kg と重力効果を大きくするとオフセットが生じていく様子が分る。このことは次のように理解される。可変フィードバックゲインを含むダイナミクス特性は

$$(I/K_p)\dot{\theta} + (D+K_v)/K_p \cdot \dot{\theta} + \theta - (mlg/K_p)\sin\theta$$

= $r(t)$ (10)
 $\ddagger t t t b 5$

Fig. 9 Variation of adaptive control response x_1 compensated by I-action with reset time T_I . (a) $T_I=3[s]$. (b) $T_I=6[s]$. (c) $T_I=2[s]$.

 $\alpha \ddot{\theta} + \beta \dot{\theta} + \theta - f(g, \theta) = r(t) \tag{11}$

で記述され、このままでは重力項 $f(g, \theta)$ が残り、この MRAS の基本思想に適合しないからである。

この制御偏差の因となる重力項は、逆動力学法によ る通常のロボット制御ではその効果を打ち消すための 重力補償演算をしなければならないが²⁰、ここでは I 動作機能を付加することにより(同図(b)の SW1 を ON にする)比較的容易にオフセットが改善されるこ とを示す。

この I 動作と可変フィードバックゲイン K_p , K_v を 含む場合のダイナミクス側の状態方程式は, I 動作の リセット時間を T_I とするとき

- 124 -

Fig. 10 Cylindrical coordinate robot with 3degree-of-freedom $(r-\phi-z)$.

$$\begin{bmatrix} \dot{z}_{1} \\ \dot{z}_{2} \\ \dot{z}_{3} \end{bmatrix} = \begin{bmatrix} \dot{\theta} \\ \ddot{\theta} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -c_{2}K_{p}/T_{I} & -c_{2}K_{p} & a_{22}-c_{2}K_{r} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \\ z_{3} \end{bmatrix} \\ + \begin{bmatrix} 0 \\ 0 \\ (-mlg/I)z_{2}\cos z_{1} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ c_{2}K_{p}/T_{I} \end{bmatrix} r(t) \\ + \begin{bmatrix} 0 \\ 0 \\ c_{2}K_{p} \end{bmatrix}$$
(12)

で与えられる。 T_I をパラメータにした台形波状入力 に対する制御応答結果は**図**9のようになるが、I動作 によりオフセットが完全に改善されていることがよく 分る。また T_I が小さくなるにつれ応答性が向上し、 $T_I \leq 2[s]$ では不安定となる傾向は PI 制御の特徴とい える。同図(b)のように良好な制御応答下では $K_p \approx K_v$ =1 と互いに一致しているが、同図(c)の場合には K_p $\neq K_v$ であり、特に(a)から(c)へと応答性が改善するに つれて速度フィードバックゲイン K_v 値が高くなる傾 向が見られる。

なお図説は省略するが、2関節リンク系では、姿勢 の変化に伴う慣性負荷変動には十分適応制御できる が、重力項によるオフセットが生じた。この点は I 動 作機能の付加により1リンク系と同様に改善される。

3.3 2自由度(極座標型)ロボットへの応用

図10は3自由度円筒座標型マニピュレータを示す。 アームの質量を M_n,その長さを l₀,負荷相当質量を M_h, その座標をr(t) およびz(t), z 方向支柱の質量を M^* , その質量慣性モーメントを I_r ,回転変位を $\phi(t)$ とする とき,系の運動方程式は Lagrange 方程式⁹⁾より以下 のように記述される。

 r, φ, z 方向の単位ベクトルを u_r, u_{φ}, u_z とするとき, ペイロード M_l の速度vおよびアームの重心Gの速度 v_G は

$$\begin{array}{c} \boldsymbol{v} = \dot{\boldsymbol{R}} = \dot{\boldsymbol{r}} \boldsymbol{u}_{r} + \boldsymbol{r} \dot{\boldsymbol{\varphi}} \boldsymbol{u}_{\varphi} + \dot{\boldsymbol{z}} \boldsymbol{u}_{z} \\ \boldsymbol{v}_{G} = \dot{\boldsymbol{R}}_{G} = \dot{\boldsymbol{r}} \boldsymbol{u}_{r} + (\boldsymbol{r}(t) - l) \dot{\boldsymbol{\varphi}} \boldsymbol{u}_{\varphi} + \dot{\boldsymbol{z}} \boldsymbol{u}_{z} \end{array} \right)$$
(13)

また系の運動エネルギーTおよびポテンシャルエネ ルギーUは

$$T = \boldsymbol{v}^T M_i \boldsymbol{v}/2 + \boldsymbol{v}_G^T M_r \boldsymbol{v}_G/2 + I_z \dot{\boldsymbol{\varphi}}^2/2$$

$$U = (M_l + M_r) g z(t)$$
(14)

であるので, r, φ, z 方向の操作力および制御トルクを それぞれ $K_r(t), M_{\varphi}(t), K_z(t)$ とするとき,系の運動 方程式は

$$\frac{d/dt(\partial T/\partial \dot{r}) - \partial T/\partial r + \partial U/\partial r = K_r(t)}{d/dt(\partial T/\partial \dot{\varphi}) - \partial T/\partial \varphi + \partial U/\partial \varphi = M_{\varphi}(t)}$$
(15)
$$\frac{d/dt(\partial T/\partial \dot{z}) - \partial T/\partial z + \partial U/\partial z = K_z(t)}{d/dt(\partial T/\partial \dot{z}) - \partial T/\partial z + \partial U/\partial z} = K_z(t)$$

$$\begin{bmatrix} \vec{r} \\ \vec{r} \\ \vec{\phi} \\ \vec{z} \\ \vec{z} \end{bmatrix} = \begin{bmatrix} \vec{x}_1 \\ \vec{x}_2 \\ \vec{x}_3 \\ \vec{x}_4 \\ \vec{x}_5 \\ \vec{x}_5 \end{bmatrix} = \begin{bmatrix} x_2 \\ f_1(X) \\ x_4 \\ f_2(X) \\ x_6 \\ 0 \end{bmatrix}$$

$$+ \begin{bmatrix} 0 & 0 & 0 \\ f_2(X) \\ x_6 \\ 0 \end{bmatrix}$$

$$+ \begin{bmatrix} 0 & 0 & 0 \\ \frac{1}{M_r + M_l} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \frac{1}{N_r + M_l} & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} (16)$$

となる。ただし

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} K_r \\ M_{\varphi} \\ K_z^* \end{bmatrix} = \begin{bmatrix} K_r(t) \\ M_{\varphi}(t) \\ K_z(t) - (M_l + M_r)g \end{bmatrix}$$
(17)

$$f_{1}(X) = x_{1}x_{4}^{2} - \frac{M J_{0}}{2(M_{r} + M_{l})} x_{4}^{2}$$

$$f_{2}(X) = \frac{-2\{(M_{l} + M_{r})x_{1} - M_{r}I_{0}/2\}x_{2}x_{4}}{k^{*} - M_{r}I_{0}x_{1} + (M_{l} + M_{r})x_{1}^{2}}$$
(18)

-125 -

Fig. 11 Adaptive control system block diagram for the polar coordinate robot with 2-degree-of-freedom.

Fig. 13 Variation of adaptive control responses r and ψ as a parameter of b. (a) b=2[1/(rad/s)]. (b) b = 0.7 [1/(rad/s)].

(19)

 $k^* = M_r l_0^2 / 4 + I_z$ 状態方程式(16)において,第2行($\dot{x}_2 = \ddot{r}$)と第4行(\dot{x}_4 $= \phi$)に注目すると、 $r(=x_1) \ge \phi(=x_3)$ に関する運動 方程式は、非線形連成系9)であり、特に第4行の右辺 第1項より φ 方向の運動はコリオリカ(x_2x_4 項)の作 用する干渉系である。一方2方向の運動は第6行より 明らかなように $r-\varphi$ 方向とは全く独立した線形系で あり,その適応制御は前節の結果より容易に可能であ る。従って本節では、座標間の干渉のある2自由度 $(r-\varphi)$ 極座標系の MRAS に限定して言及してみる。

2自由度 $r-\varphi$ ダイナミクスに MRAS を適用した 場合の可変ゲインを含むシステムは図11のようになる。 r方向制御のための可変ゲイン K_{n1}, K_{n1} と φ 方向制御 のための K_{p2}, K_{v2} には互いに独立した MRAS を適用 している。ここにブロック線図の各要素は

$$\begin{array}{c} a_{21} = x_4^2 \\ a_{24} = \frac{-M_r l_0 x_4}{2(M_r + M_l)} \\ a_{42} = \frac{-2(M_l + M_r) x_1 x_4}{k^* - M_r l_0 x_1 + (M_l + M_r) x_1^2} \\ a_{44} = \frac{M_r l_0 x_2}{k^* - M_r l_0 x_1 + (M_l + M_r) x_1^2} \end{array}$$

$$(20)$$

$$\begin{aligned} b_{21} &= \frac{1}{M_r + M_l} \\ b_{42} &= \frac{1}{k^* - M_r l_0 x_1 + (M_l + M_r) x_1^2} \\ \vec{\mathcal{H}} &= \vec{\mathcal{T}} \quad \vec{\mathcal{$$

図12は、ペイロード $M_i=0$ の場合で、 $a=1/\omega_n^2$ =1[s²], M_r =1[kg], l_0 =1[m], k^* =1[kg·m²] に設定 した場合の $b=2\zeta/\omega_n$ をパラメータにした $r-\varphi$ 制御 応答を示す。(a) (ζ=1), (b) (ζ=0.35), (c) (ζ=0.1) い ずれの場合も、良好な適応制御性がみられ、複雑な力 学干渉のある系でもこの MRAS で十分制御可能であ ることを示している。

図13は、 $M_i=5[kg]$ とし、 $b=2\zeta/\omega_n$ をパラメータ にして適応制御性を調べたものである。同図(a)は、ζ =1 に設定した場合であるが φ 方向はともかくr方向 の応答に多少不安定性がみられる。一方、同図(b)は ζ=0.35 に設定した場合で、r方向は(a)の場合とほぼ 同じ制御性が見られるが、 φ 方向の制御に関してはス テップ入力の除去後完全に不安定となっている。図12 の $M_i=0$ の場合と比較すると、ペイロードの負荷が 増すにつれ不安定性が増すことがわかる。また図12よ り明らかなように、アーム系の姿勢の変化により慣性 負荷はかなり変動するが、これに対しても十分適応制 御しうることが分る。

ロボットアーム系の動特性は上述のとおり非線形で 姿勢によりパラメータ変動するので、その安定性は単 純には論じられない。一般的には局所的線形化により ロボットアーム系のもつ固有値を姿勢の変化に対応し て調べることが考えられているが¹⁰, この($r-\varphi$) 極 座標系の安定性に及ぼす負荷 M_l の影響(特に x_2 =i<0 領域で φ が不安定になっている点)について は、運動方程式の制動項に着目して考察される。すな わち φ 方向の被適応系制御式は、式(21)より

$$\dot{x}_{4} = \ddot{\varphi} = \frac{1}{k^{*} - M_{l} l_{0} x_{1} + (M_{l} + M_{r}) x_{1}^{2}} \{ - [2(M_{l} + M_{r}) x_{1} x_{2} + K_{\nu 2} - M_{l} l_{0} x_{2}] x_{4} - K_{\rho 2} x_{3} + K_{\rho 2} r_{2}(t) \}$$
(22)

となるので,次の条件

$$0 \leq x_1 < \frac{k^* + (M_l + M_r) x_1^2}{M_r \lambda_0}, \quad x_2 < 0$$
(23)

に限定すると、 M_I の増加はダンピング項 $x_4(=\dot{x}_3=\dot{\varphi})$ の減衰係数¹¹⁾を低めることに寄与することから理解される。

4. 結 言

Dubowsky の MRAS の実用性を,1自由度および 2自由度系ダイナミクスの過渡応答と周波数応答の両 面より検討した。

(1) 定形波入力に対する適応制御性は、調節ゲイン K_p, K_v の初期値に依存する $(K_p, K_v$ の初期値を,規 準モデルパラメータ $(a=1/\omega_n^2, b=2\zeta/\omega_n)$ とダイナ ミクス側パラメータ $(\alpha=M/(K_m\cdot K_p), \beta=K_v/K_p)$ に 一致するよう設定すれば、良好な適応制御性は当然得 られる)。

(2) ((1)に関連して) 周波数入力 $r(t)=0.5 \sin pt(p=\omega/\omega_n ~ \sigma ~ \omega_n=1[rad/s])$ に対する適応制御性は $p \leq 2$ の範囲内で良好である。

(3) 1自由度関節リンク系の制御に関しては,重力 項のためオフセットが生ずるが,I動作機能をフィー ドフォワードゲイシ K_p に付加することにより良好な 適応制御性が得られる。

(4) コリオリカなど非線形力の作用する2自由度 (r-φ) 極座標系のロボット制御に関しては,座標間 の干渉があるにもかかわらず良好な適応制御性が得ら れる。

(5) 慣性負荷などのパラメータ変動に対しては MRAS は十分適応制御できる。

謝 辞

本研究に際して,伊賀康博氏(現,サンエス)に助 力を戴いたことを述べ,感謝の意を表します。

参考文献

- 1)高野:ロボット運動の高速化技術,計測と制御, 21-12,34/40(1982).
- 2) 有本:ロボットのリアルタイム制御,システムと 制御, 29-9, 592/599 (1985).
- 3)井上:ソフトウェアサーボによるロボットの制御,81-713,105/111(1978).
- 4)遠山他:ロボットの CP 制御の高速化に関する研究,精密機械,51-2,108/113 (1985).
- 5) 遠山他:ロボットの高速化に関する研究,精密機

- 127 ---

械, 48-5, 97/104 (1982).

- 6) 伊藤他:ロボットアームの滑り状態制御,計測と 制御, 25-1, 51/56 (1986).
- 7) S. Dubowsky, 他: The application of Model-Referenced Adaptive Control to Robotic Manipulators, Trans. ASME, ser. G, 101, 193/200 (1979).
- 8) D. DONALSON, 他: A Model Referenced-Parameter Tracking Technique for Adaptive Control System, Trans. IEEE on Applications and

Industry, 82-63, 241/262, (1963).

- 9)日高,川辺,芳村,他:機械力学(「現代機械工 学シリーズ」),朝倉書店(近刊).
- 10) 神谷:ロボットの高速化・高精度化,精密機械, 51-11, 20/25 (1985).
- H. Kawabe 他: A Consideration of Vibration Damping Characteristics in Superplastic Materials, Bull. of Japan Soc. Prec. Engg. に掲載 予定。