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1　Introduction

 There have been number of good discussions in 
coin tossing. Feller (1968) is most referred to, and 
very intriguing subjects are also discussed; e.g., Mood 
(1940), Bloom (1996), Finch (2003), Havil (2003),  
Gordon, Schilling, Waterman (1986), Philippou (1986), 
Schilling (1990), Schuster (1994) are among them. 
Some are in ideally fair coins, and others are in actual 
coin, e.g., Keller (1986), Ford (1983). Here we want to 
deal with the number of consecutive heads in a run.
 Imagine that we are doing a run of coin tossing of 
length n. When n = 3, for example, the head (H) and 
tail (T) patterns are, HHH, HHT, HTH,..., TTT; the 
number of all possible patterns is 2 83 = . Among these 
eight patters, we find three consecutive heads pat-
terns; two consecutive heads cases are HHT and THH, 
and three consecutive heads case is HHH. The num-
ber of consecutive heads is counted to be two, two or 
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Abstract
How many consecutive heads do we observe in a run of coin tossing of length n? Although the 

problem seems to be easy to answer, this would be actually a little bit tough when we try to prove it 

straightforwardly. The expected number of consecutive heads in a run is 
3 2
8
n −

 (n ≥ 2) using the recur-

sive formula.
However, if we define a solitary head coin such that a head coin is isolated by neighboring tail coin(s) 

in a run, the problem of how many solitary heads we observe in a run can be solved easily. The 

expected number of solitary heads in a run is 
n+ 2
8

 (n ≥ 2). Since the problem of solitary head coin 

becomes a dual problem of the above, the consequence of the problem of the consecutive heads is 
derived easily by considering the probability of a solitary coin appearance.
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three to each case. When n = 5, there are no consecu-
tive heads in a run of THTTH or HTHTH; when a run 
is HHTHH, the number of consecutive heads becomes 
four; when THHHT, it is three.
 In this paper, we consider a problem. How many 
consecutive heads can we expect to observe in a run 
of coin tossing of length n? To deal with the problem, 
we append one point to a head coin of consecutive 
heads and zero point otherwise. We demonstrate the 
case of n = 3 to grasp the problem. When n = 3, we get 
3 point from HHH and 2 point each from THH or HHT, 
as shown in Figure 1; thus, the expected point in a run 

is 
3 2 2

8
7
8

+ + = .

2　 Expected Number of Consecutive Heads 
in a Run

 We define ai such that
ai = 1   ith flipped coin is head,
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ai = 0   ith flipped coin is tail,
and bi such that

bi = 1   ith flipped coin is one of the consecutive 
heads,
bi = 0   ith flipped coin is a solitary head or tail.

We, then, can define the point t a a an n1 2, , ,( ) in a 
run by

t a a a bn n
i

n

i1 2
1

, , , .( ) =
=
∑

By summing up tn  for all possible runs, we define the 
total possible point of

f n t a a a
a a a

n n
n

( ) = ( )∑
1 2

1 2
, , ,

, , , .




As an example, we show ai , tn , and f n( ) for n = 2 3,  in 
Figure 1. Once we can obtain f n( ), the expected point, 
E tn , becomes to

E t
f n

n n =
( )
2

 To f n( ), we consider a recursive formula. The total 
point consists of the following three inn coin tossing:
 1) Whatever the value of an  is, f n −( )1  expressed by 
a a an1 2 1, , , −  is taken into account of; i.e., 2 1f n −( ) is 
counted in f n( ). This is shown in (i) in Figure 1.
 2) If an− =1 1, and an = 1, then bn = 1. Thus, 2 2n−  point 
are counted in f n( ), since we have 2 2n−  possible cases 
for a a an1 2 2, , , − . This is shown in (ii) in Figure 1.
 3) If an− =2 0, an− =1 1, and an = 1, then bn− =1 1. 
When we deal with n − 1 coin tossing, bn− =1 0  if 
an− =2 0, an− =1 1. Thus, bn−1 changes its value from 0 to 
1. According to this, 2 3n−  point are counted in f n( ) 

because we have 2 3n−  possible cases for a a an1 2 3, , , − . 
This is shown in (iii) in Figure 1.
 Therefore, we have the recursive formula as

f n f n nn n( ) = −( ) + + ≥( )− −2 1 2 2 32 3, .
This formula can be solved as follows:

f n f n n( ) = −( ) + ⋅ −2 1 3 2 3

= −( ) + ⋅( ) + ⋅− −2 2 2 3 2 3 24 3f n n n

= −( ) + ⋅ + ⋅− −2 2 3 2 3 22 3 3f n n n

= −( ) + ⋅ ⋅ −2 2 3 2 22 3f n n

= −( ) + ⋅( ) + ⋅ ⋅− −2 2 3 3 2 3 2 22 5 3f n n n

= −( ) + ⋅ + ⋅ ⋅− −2 3 3 2 3 2 23 3 3f n n n

= −( ) + ⋅ ⋅ −2 3 3 3 23 3f n n

…

= ( ) + ⋅( ) + −( )− −2 2 3 3 2 3 4 24 1 3n nf n

= ( ) + −( )− −2 3 3 3 23 3n nf n

= ( ) + −( )( )−2 3 3 33n f n

= −( )( ) ≥( )−2 3 2 33n n n, .

Therefore, the expected point, E tn , which is equiva-
lent to the expected number of consecutive heads, Cn,  
becomes

E t
n n

nn

n

n =
−( )

= − ≥( )
−2 3 2

2
3 2
8

2
3

, ,

in a run, because this formula holds also when n = 2.

3　 Probability That a Coin is a Solitary Head 
Coin

 When a1 1=  and a2 0= , then the very first flipped 
coin is the solitary head coin. Whatever values the 
other ai have, the probability that the first flipped coin 

is a solitary head coin is 
1
4

 because the probability that 

a1 1=  and a2 0= , and a i ni = ≤ ≤( )0 1 3,  is 
2
2

2n

n

−
.  Let’s 

consider here that we append point one only to the 
solitary head coin. Then, the expected point from this 

coin is 1
1
4

×  = 1
4

. This is also true for the very last 

flipped coin.
 For the second flipped coin, it becomes a solitary 
head coin if a1 0= , a2 1= , and a3 0= , whatever values 
the other coins have, where 4 ≤ ≤i n . Then, the 

expected point from this coin is 1
1
8

×  =
1
8

, and this is 

Figure 1 An example of ai, ti, and f n( ) for n = 2, 3.
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also true for a an3 2, , − .
 Therefore, the total expected point for the solitary 
heads, which is equivalent to the expected number of 
solitary heads, Sn, in a run becomes,

S n
n

n = × + −( ) × = +
2

1
4

2
1
8

2
8

.

 Considering that the problem of how many solitary 
heads we observe in a run becomes a dual problem for 
the original consecutive heads observation problem, 
the expected number of consecutive heads in a run, 
Cn, is

C
n n n

nn = − + = − ≥( )
2

2
8

3 2
8

2, .

4　Concluding Remarks

 How many consecutive heads we observe in a run 
of coin tossing of length n, which seems to be a little 
bit tough to solve, can be solved easily by considering 
the dual problem of counting solitary head coins such 
that a head coin is isolated by neighboring tail coin(s) 
in a run. Since the expected number of solitary heads 

in a run is 
n

n
+ ≥( )2
8

2 , the expected number of con-

secutive heads in a run is 
3 2
8

2
n

n
− ≥( ) .
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