多層NCブレース架構の地震応答性状に関する研究

高松 隆夫*・玉井 宏章**・小松 真吾***

(平成28年11月1日受付)

Seismic response behavior of multi-story NC braced frames

Takao TAKAMATSU, Hiroyuki TAMAI and Shingo KOMATSU

(Received Nov. 1, 2016)

Abstract

The authors have proposed Z-type and anti-symmetric Z-type NC braced frames that reduce absolute acceleration response by accumulated elastic strain energy. The elastic strain is accumulated by incremental deformation due to elastic response. These frames show similar elasto-plastic seismic response behavior by plastic energy absorption of the NC braces to hysteric dampers. They are compared for single-span and single-story frames. Numerical analyses of eight-story, three-span frames with various NC brace arrangements are carried out to compare the seismic response behaviors of Ztype, anti-Z-type and X-type braced multi-story frames. Residual deformation in multi-story frames after an earthquake can be calculated based upon incremental deformation in each story.

Key Words: multi-story, non-compression brace, brace arrangement, elastic strain energy accumlation, numerical analyses

-69-

1. 序論

地震応答低減のため,安価で性能の安定した鋼材ダン パーが多用されているが,これらを設置した構造物はダン パー弾性限内ではエネルギーを消費できず高剛性を維持 するので,地震時の絶対加速度が高くなりやすく¹⁾,室内 什器の転倒や滑りが生じる可能性がある²⁾。これは,ダン パーを早期降伏させることで回避できるが,比較的発生頻 度が高い地震動レベルからダンパーを損傷させる必要が あり,必ずしも合理的な設計であるとは言い難い。

一方で,これらの問題を解決しうるシステムとして著 者等は図1に示すZ型^{3),5)}および非対称Z型^{4),6)}NC (Non-Compression)ブレース架構を提案し,以下に示す性能を活 用した中低層建築物の耐震設計法構築を目指している。

- Z型は層間変形の一方向漸増(図1(a)),非対称Z型は 層間捩り角の一方向漸増(図1(b))に基づく弾性ひず みエネルギー蓄積で,絶対加速度応答を低減できる。
- ブレース弾塑性時には bi-linear 型の復元力特性を示し、 鋼材ダンパー架構同等の応答低減効果を発揮する。

 漸増変形に基づく残留変形は、地震後のNCブレース 残留張力を解放することで容易に除去できる。

これまでに、1,2 層架構で Z 型^{3,5)} および非対称 Z 型^{4,6)} の振動台実験を行うとともに、実大 1 層架構の数値解析に より Z 型、非対称 Z 型の比較を行ってきたが⁷⁾、多層架構 において Z 型と非対称 Z 型の比較は行われていない。

そこで、本論では図 1(c)の X 型⁸⁾を含めたブレース配置を変数とした 8 層 3 スパン架構の数値解析を行い、各々の弾性、弾塑性地震応答性状を比較する。また、多層 Z 型および非対称 Z 型 NC ブレース架構の各層に生じる、漸増変形に基づいた地震後残留変形を計算する手法を示す。

^{*} 広島工業大学工学部建築工学科

^{**} 長崎大学大学院工学研究科

^{***} 広島工業大学大学院工学系研究科知的機能科学専攻

(a)Z型の機構1

図2 多層 Z型 NC ブレース架構の漸増変形機構

(b) 非対称 Z 型の機構 2

図3 多層非対称 Z型 NC ブレース架構の漸増捩り変形機構

2. 多層 NC ブレース架構の力学特性

2.1 多層架構の漸増変形機構

n 層 1 スパン架構で Z 型,非対称 Z 型の *i* 層に生じる漸 増変形の機構を説明する(ブレース配置は図1参照)。非 対称 Z 型の場合には簡単のため、ブレース系の負担水平 力のみを考えるとともに、剛性偏心の影響を考慮しない。 以下, *i* 層の主架構, ブレース系の剛性を K₀, K_{bi}, *i* 層のブ レース系水平力分担率を $\beta_i = K_{hi}/(K_{ii}+K_{hi}), i \sim n$ 層までの 水平力総和を ΣPiと定義する。ブレース材料は完全弾塑 性体とする。

○ Z 型 NC ブレース架構の漸増変形機構^{3),5)}

図 2(a), (b) に示す Z 型の漸増変形機構は (c) の復元力特 性と対応付けて次のように説明できる。

- 1) 図 2(a) のようにブレース圧縮方向に ΣP_i が作用すると, NC ブレースは圧縮力を負担しないため、主架構のみ が水平力を負担する(図2(c):点O→A)。
- 2) 図 2(b) のように水平力が増分 ΣΔP_i で減少すると,ブ レースは引張変位を受けて直ちに抵抗し, 主架構, ブレースは各々左向きの増分を生じる(図2(c):点 $A \rightarrow B)_{\circ}$
- 3) 層剛性が K_{fi} から $K_{fi}+K_{bi}$ に変化することで、 $\sum_{i=1}^{n} \Delta P_{j} = \sum_{i=1}^{n} P_{j}$ の層せん断力零点ではブレース系残留水平力 $\beta_i \Sigma P_i$ に よる残留層間変形 $\beta_i \Sigma P_i / K_{fi}$ が生じる。
- 4) ブレース圧縮方向の水平力が Σ Pi 以上で層剛性が再び K_{fi} となる (図 2(c): 点 A \rightarrow C)。以上の機構を繰り返し て層間変形が一方向に漸増する。
- 5) ブレース弾塑性時には、図2(c)の点Dを履歴中心とし

た bi-linear 型復元力特性を示し、地震後残留層間変形 はほぼ点**D**に収束する。この層間変形を δ_{a}^{*} とし、そ の絶対値を次式で表す。

$$\left|\delta_{ci}^{*}\right| = \frac{Q_{byi}}{K_{fi}} \tag{1}$$

ここに、 $Q_{bvi}: i$ 層ブレース系の降伏水平力である。

〇非対称 Z 型 NC ブレース架構の漸増捩り変形機構^{4),6)}

漸増捩り変形による *i* 層の層間捩り角 ø_i は, *i* 層重心回 りのブレース負担水平力の捩りモーメント M_nを主架構 i 層の捩り剛性 K_{et} で除した次式で表せる。

$$\phi_i = \frac{M_{T_i}}{K_{\theta_i}} \tag{2}$$

*ϕ_i*の漸増は,図3(a),(b)に示す*M_π*の単調増加機構とし て説明できる。

- 1) 図 3(a) のように ΣP_iが作用すると, Y1 構面ブレース が引張抵抗して Mn を生じる。
- 2) 図 3(b) のように水平力が ΣΔP; で減少すると, Y2 構面 ブレースは引張変位を受けて直ちに抵抗し、ブレース は各々右向きの増分 $\Sigma \Delta P_i/2$ を生じる。
- 3) 増分 $\Sigma \Delta P_i/2$ の作用で M_{π} は ΣP_i 以下の水平力 $(0 \le \Sigma \Delta P_i \le 2\Sigma P_i)$ で保持される。
- 4) 水平力が以前経験した最大値 <u>Σ</u>P_jを超えることで M_n が再び増加する。
- 5) M_{π} はx, y 方向のブレース降伏で頭打ちとなり、以降 は一定となる。このときの M_n を降伏捩りモーメント M_{Tvi}と定義し次式で表す。 $M_{T_{vi}} = Q_{hvi} l$ (3)

ここに,*l*:ブレース設置構面間距離である。また,*M_{īji}* に対応する ϕ_i を降伏層間捩り角 ϕ_{vi} と定義する。

2.2 層間変形の連成

多層架構の i 層において漸増変形が生じる場合, 図4に 示すように節点の回転によって隣接層にも残留層間変形 が生じる。従って、多層架構の場合は層間変形の連成を考 慮して残留層間変形を求めなければならない。

文献5)では、2層1スパン架構において層間変形の 連成を考慮して漸増変形に基づく残留変形を求めるモデ ルを構築したが、本論では一般のn層架構に拡張した図 5(a)~(c)のモデルを考える。(a)は柱脚を固定とした最下 層にブレースを設置する場合,(b)は一般層にブレースを

表1 層間変形の連成を考慮した各層の残留層間変形

j	$\delta_{_{1j}}$		δ_{ij}		δ_{nj}		
n	0		0		$\frac{1}{\sum k_{cn}} \cdot \frac{\frac{19}{3} + 60\gamma_n + 168\gamma_n^2 + 144\gamma_n^3}{\frac{1}{9} + 5\gamma_n + 32\gamma_n^2 + 48\gamma_n^3} \cdot \frac{Q_{brn}h_n^2}{36EK_0}$		
n-1	0		0		$\frac{1}{\sum k_{cn-1}} \cdot \frac{3 + 24\gamma_{n-1} + 36\gamma_{n-1}^{2}}{\frac{1}{9} + 5\gamma_{n-1} + 32\gamma_{n-1}^{2} + 48\gamma_{n-1}^{3}} \cdot \frac{\mathcal{Q}_{bm} h_{n-1} h_{n}}{36E K_{0}}$		
:	÷	·	:	[.]	: :		
<i>i</i> +1	0		$\frac{1}{\sum k_{ci+1}} \cdot \frac{9 + 36\gamma_{i+1} + 36\gamma_{i+1}^{2}}{\frac{10}{9} + \frac{43}{3}\gamma_{i+1} + 48\gamma_{i+1}^{2} + 48\gamma_{i+1}^{3}} \cdot \frac{Q_{bi}}{36EK_{0}} h_{i}h_{i+1}}{36EK_{0}}$		0		
i	0]	$\frac{1}{\sum k_{ci}} \cdot \frac{\frac{43}{3} + 100\gamma_i + 216\gamma_i^2 + 144\gamma_i^3}{\frac{10}{9} + \frac{43}{3}\gamma_i + 48\gamma_i^2 + 48\gamma_i^3} \cdot \frac{\mathcal{Q}_{bri}h_i^2}{36EK_0}$		0		
<i>i</i> -1	0		$\frac{1}{\sum k_{ci-1}} \cdot \frac{9 + 36\gamma_{i-1} + 36\gamma_{i-1}^{2}}{1 + \frac{131}{9}\gamma_{i-1} + 48\gamma_{i-1}^{2} + 48\gamma_{i-1}^{3}} \cdot \frac{\mathcal{Q}_{ivi}h_{i-1}h_{i}}{36EK_{0}}$		0		
:	÷		:	·	÷		
2	$\frac{1}{\sum k_{c2}} \cdot \frac{18 + 36\gamma_2}{3 + 28\gamma_2 + 48\gamma_2^{-2}} \cdot \frac{\mathcal{Q}_{hr1}h_1h_2}{36EK_0}$		0		0		
1	$\frac{1}{\sum k_{c1}} \cdot \frac{24 + 120\gamma_1 + 144\gamma_1^2}{3 + 28\gamma_1 + 48\gamma_1^2} \cdot \frac{Q_{br1} h_1^2}{36E K_0}$		0		0		

 $\delta_{2,l}$ は δ_{12} のlと2を入れ替えて、また、 $\delta_{n-1,n}$ は $\delta_{n,n-l}$ のnとn-lを入れ替えて計算する.

設置する場合,(c)は最上層にブレースを設置する場合で ある。いずれも i 層のブレース残留水平力 Q_{bri}を等価な層 せん断力として表現している。この解析モデルを用い,以 下の仮定に基づいて計算を行う。

- 1) 解析方法にはたわみ角法を用いる。
- i層に Q_{bri}が作用したときの, i層および i±1層の層間 変形 δ_{ii}, δ_{ii±1} のみ考慮し, δ_{ii±2} 以上は無視する。
- 多スパン架構を1スパン架構に縮約し,*i*層の柱,梁 剛比は縮約前の架構の合計 Σk_{ci}、Σk_{bi}と一致させる。
- 4) 多層架構では一般に柱1節毎に同一部材断面を用いる ことから、計算を簡単にするため、i層の層間変形を 算出する際には、柱剛比、梁剛比の合計は解析モデル

全層において Σk_{ci} , Σk_{bi} とする。

図 5(a) より δ_{11} , δ_{12} が, (b) より $\delta_{i,i-1}$, δ_{ii} , $\delta_{i,i+1}$ が, (c) よ り $\delta_{n,n-1}$, δ_{nn} がそれぞれ表 1 のように計算できる。ここで, $\gamma_i = \sum k_{bi} / \sum k_{ci}$, E: ヤング係数, $K_0: 標準剛度である。 <math>\sum k_{ci}$, $\sum k_{bi}$ に Ys, Xs 構面骨組 (s は構面番号) の値を用いれば, *i* 層 Ys, Xs 構面骨組の剛性 k_{fi}^{Ys} , k_{fi}^{Ys} が次式で求まる (「~」は 残留変形計算用を表す)。

$$\tilde{k}_{ji}^{\mathrm{Ys}} = \tilde{k}_{ji}^{\mathrm{Xs}} = \frac{Q_{bri}}{\sum_{j=1}^{n} \delta_{ji}}$$

$$\tag{4}$$

なお、ブレース弾塑性振動後は各ブレースに $Q_{byi}/2$ が残留 するため^{3),5),6)}、ブレース降伏後の残留変形を求める場合、

 Q_{bri} を Q_{bri} 分布に基づいて決定し $\tilde{k}_{li}^{Ys}, \tilde{k}_{li}^{Xs}$ を求めればよい。 残留変形計算用の主架構 i 層の剛性 K_nならびに捩り剛性 \tilde{K}_{μ} は次式により求められる。

$$\tilde{K}_{fi} = \sum_{s} \tilde{k}_{fi}^{Ys} = \sum_{s} \tilde{k}_{fi}^{Xs}$$
(5)

$$\tilde{K}_{\theta i} = \sum_{s} \left(\tilde{k}_{fi}^{Ys} y_{s}^{2} + \tilde{k}_{fi}^{Xs} x_{s}^{2} \right)$$
(6)

ここに, x,, y,: 重心から s 番目構面までの x, y 方向距離 である。式(1)に *K*_{fi}を,式(2)に *K*_{θi}および式(3)を代入 することで, i 層の弾塑性振動後残留変形が求まる。

2.3 弾性ひずみエネルギー蓄積量

Z型,非対称Z型,X型を,それぞれ「Z」,「AZ」,「X」 と右肩に付けることで区別する。x, y 方向ブレース降伏後 に i 層の主架構, ブレースに蓄積される弾性ひずみエネル ギーの最大値 Weimax は次式で表せる(X型は架構が一方向 漸増変形しないため、ブレースのみである)。

図6 8層3スパン解析モデル

3. 数値解析の概要

3.1 解析モデル

解析モデルを図6に,解析モデルの部材リストを表2に 示す。解析モデルは、階高を1階4.5m、2~8階4m、スパ ン長を6mとした8層3スパン架構である。解析モデルの 設計条件は,以下のとおりである。

- 1) 部材重量を除く固定荷重は一般層 4,470N/m², 最上 層 6,590N/m²とする。また、地震用積載荷重は一般層 800N/m², 最上層 600N/m²とする。
- 2) 各層の床には剛床を仮定する。
- 3) 柱, 梁, ブレースのヤング係数は E=205,000N/mm², 降伏応力度は σ_v =358N/mm²とする。
- 4) 各層において、梁の全塑性モーメントの総和 ΣM_n に 対する軸力を考慮した柱の全塑性モーメントの総和 ΣM_{pc} の比 $\Sigma M_{pc}/\Sigma M_{pb}$ が1.5を上回るものとする。
- 5) ブレースは、ブレース剛性比 K_{bi}/K_{fi} が全層1となるよ う断面を決定する。

NCブレースは、図7に示すように、圧縮降伏軸力を0.1kN として、圧縮力を負担しない特性を再現する。

3.2 解析変数

-wv-

 T_{h}

 δ_{h}

 T_{bv}

0.1kN

ブレース配置を図8に、各ブレース配置架構の性能を 表3に示す。Z型および非対称Z型ブレース配置は、全層 同一方向配置する Z-A, AZ-A, 2層毎にブレース配置方向 を交互とする Z-B, AZ-B である。Z-B, AZ-B 配置は、2 層 毎に漸増変形の方向を変化させることで、2層毎の相対変 位,また層間変形の連成を利用して残留変形(表 3(b) 参照) を抑制することを狙いとしている。

X型は、ブレースに初期張力を導入しない X、各ブレー

表2 解析モデルの部材断面リスト

17Hz	木	È	梁			
陷	C1, C2	C3	G1	G2		
8	□-450x450x22	□-450x450x19	H-400x250x9x19	H-400x250x9x16		
7			H-450x250x9x22	H 150v250v0v10		
6				H-430x230x9x19		
5						
4	□-450x450x25	□-450x450x22	H-550x250x12x22	H-550x250x12x19		
3						
2	$- 450 \times 450 \times 28$	□ 150×150×25	$H = 600 \times 250 \times 12 \times 25$	H = 600 v 250 v 12 v 22		
1	□-430x430x28	\Box -430x430x23	H-000x230x12x23	11-000x230x12x22		

表3 解析モデルの性能 (a) 固有值解析結果

	R_{ci}^*	(rad)	R_{yi} (rad)		W _{ei,max} (kN·m)					
l	Z-A	Z-B	AZ-A	AZ-B	Z-A	Z-B	AZ-A	AZ-B	Х	XT
8	1/662	1/1416	1/374	1/753	9.706	7.120	13.45	9.116	4.853	0
7	1/662	1/1353	1/371	1/728	10.66	7.934	14.84	10.17	5.329	0
6	1/662	1/1374	1/364	1/740	12.27	9.089	17.29	11.62	6.135	0
5	1/662	1/1247	1/363	1/673	14.38	11.00	20.31	14.26	7.188	0
4	1/662	1/1321	1/361	1/713	14.89	11.17	21.11	14.35	7.446	0
3	1/662	1/1108	1/358	1/598	16.09	12.85	22.90	16.95	8.044	0
2	1/662	1/1387	1/358	1/752	18.13	13.39	25.81	17.04	9.067	0
1	1/688	1/1293	1/368	1/704	24.80	19.00	35.61	24.51	12.40	0

表3 解析モデルの性能 (b) 残留層間変形角および最大弾性ひずみエネルギー蓄積量

 R_{ai}^{*} : δ_{ai}^{*} 発生時の層間変形角, R_{yi} : ϕ_{yi} 発生時の外周構面層間変形角

スに降伏軸力の 50% の初期張力を導入することで鋼材ダンパー架構同等の性能を有する XT とする。X, XT のブレース断面積は Z, AZ の 1/2 とし,表 3(a) に示すように 1 次固 有周期 T₁を一致させている。

入力地震動は、El Centro 1940, Taft 1952, Hachinohe 1968 である。これらのNS成分をx方向に、EW成分をy方向に、 最大地動速度を0.25, 0.50m/s にそれぞれ基準化して入力 する。0.25m/s入力はブレース弾性時の地震応答性状を、 0.50m/s入力はブレース弾塑性時の地震応答性状を、それ ぞれ比較することが目的である。0.25m/s入力では下層部 でブレースが塑性化する傾向にあったが、その損傷は軽微 であったため、ブレースを弾性として解析した。

3.3 解析条件

解析条件は以下のとおりである。

- 1) 数値解析には, SNAP を用いる。
- 数値積分の方法は Newmark-β法(β=0.25 の平均加速 度法)とし、時間刻みは 0.005s とする。
- 3) 減衰は瞬間剛性比例型で1次減衰定数を0.02とする。
- 4) 解析時間は 80s とする。

4. 数値解析結果および考察

4.1 層せん断力係数分布

図9にx,y方向で入力した計6波の入力地震動について 平均した0.25,0.50m/s入力の層せん断力係数*C_i*の分布を 示す。*C_i*分布は,4.3節にて後述するように,0.25m/s入 力ではブレース配置により大きさが異なり,0.50m/s入力 ではブレース配置によらずほぼ一定となるが,いずれもそ

の分布形状は通常架構 (XT) とほぼ同等である。また,XT の場合には、 A_i 分布に基づいて計算した C_i を併せて示し ている。 A_i 分布に基づく場合、0.25、0.50m/s ともに、最上 層ではやや大きめとなるが、いずれのブレース配置の場合 においても、平均的な C_i を A_i 分布に基づいて良好に評価 できることが分かる。

4.2 外周構面の最大相対変位

ブレース弾性時,弾塑性時ともに同様の傾向が得られ たため,図10には El Centro NS, 0.50m/s 入力の Y1 構面に おける,最大変位発生時刻の相対変位 x_i^{Y1} 分布を示す。な お,同一点における地震後の残留相対変位を小さいプロッ トと破線で併せて示す。

図10より,全層ブレースを同一方向配置したZ-A, AZ-Aの外周構面は,各層の漸増変形によりX,XTと比べ て一方向に偏るとともに,比較的大きな残留変位が生じて いるが,Z-B,AZ-Bのように2層毎にブレース配置を交互 とすることで,架構の変位領域および2層毎の残留変位を X,XTの場合と同程度に抑制できることが分かる。

4.3 最大絶対加速度応答

図 11 に 0.25m/s 入力の El Centro NS, Taft EW, Hachinohe EW, 0.50m/s 入力の El Centro NS における *i* 層重心位置の 最大絶対加速度 $\alpha_{i,max}$ 分布をそれぞれ示す。

図 11(a)~(c) より, 0.25m/s 入力時の Z-A, Z-B, AZ-A, AZ-B, X の最大絶対加速度 $\alpha_{i,max}$ は, 弾性ひずみエネルギー蓄積により, いずれも XT に比べて低減される。各ブレース

配置の低減効果は、概ね $X < Z-B < AZ-B \approx Z-A < AZ-A$ の 大小関係にあり、これは表3に示す $W_{ei,max}$ の大小関係と合 致する。すなわち、弾性ひずみエネルギー蓄積量の大きな ブレース配置ほど絶対加速度の低減が期待できる。また、 上層部の方が低減効果が顕著となる傾向にあり、本解析 では Z-A, Z-B, AZ-A, AZ-B, X でそれぞれ最上層において 31.8, 28.3, 34.3, 31.0, 24.7%の最大絶対加速度低減が見られ た。

図 11(d) を見ると、0.50m/s ではブレース配置によらず 最大絶対加速度はほぼ一定となる。これは、いずれのブ レース配置でも bi-linear 型復元力特性を示して鋼材ダン パー架構同等の性能が発揮されるためである。

以上から、 C_i の大きさは、0.25m/sでは各ブレース配置 で異なり、0.50m/sでは配置によらずほぼ一定となる。

4.4 最大層間変形角

図 12 には El Centro の Ys 構面, Taft の Xs 構面のうち, 最大の層間変形角 $R_{i,max}^{Ys}$ を示す。(a), (b) より, 0.25m/ s 入力時の最大層間変形角は, 概ね X < XT \approx Z-B < Z-A \approx AZ-B < AZ-A の大小関係にある。

XTと比較して Z-A, AZ-A の層間変形角は漸増変形に よって大きくなるが、いずれも内外装材が層間変形に追従 できることを前提として緩和した制限値 1/120rad 以内に 収まっている。ただし、Z-B, AZ-B とすれば Z-A, AZ-A と 比べ層間変形角を抑制することが可能である。すなわち、 *i* 層と*i*+1層でブレース配置が異なる場合、*i* 層の漸増変 形によって*i*+1層に生じる変形は*i*+1層の漸増変形によっ て生じる変形と異符号となるためである。

このように,弾性ひずみエネルギー蓄積に基づく応答低 減に加え,ブレース配置を工夫し層間変形の連成を利用す ることで,Z-BのようにXTとほぼ同等となる場合もある。

また、図12(c),(d)より、0.50m/s入力時では弾性ひず みエネルギー蓄積による応答低減に期待できないため、

 $R_{i,\max}^{Y_s}$, $R_{i,\max}^{X_s}$ の大小関係は X ≈ XT < Z-B < Z-A ≈ AZ-B < AZ-A となる。

4.5 地震後残留層間変形角

図 13 には、Ys, Xs 構面のうち、最大の残留層間変形角 $R_{r,r}^{Ys} R_{r}^{Xs} を示す。Z, AZ の場合には、2.2 節に従い計算した漸$ 増変形に基づく残留層間変形角(表 3)も併せて示す。た $だし、Z-A, AZ-A で各層の<math>K_{bi}/K_{fi}$ が一定の場合、 $\tilde{K}_{fi}, \tilde{K}_{\theta i}$ は $K_{fi}, K_{\theta i}$ で評価できるため、これらの場合には $K_{fi}, K_{\theta i}$ を用 いて残留層間変形を計算した。

0.50m/s入力では、各ブレース架構ともに最上層ではブレースが降伏しておらず、また下層部分で主架構が僅かに 塑性化していた。これらに起因して、Z-A、AZ-Aでは最上 層および下層部分で計算値との対応がやや悪いケースも あるが,全体的に良く対応している。更に,Z-B,AZ-Bから,層間変形の連成を考慮した地震後残留層間変形角の計算値は,工学的に十分な精度で解析結果と対応することが分かる。

5. 結論

本論では、8層3スパン架構において、NC ブレース配置をZ型、非対称Z型、X型として解析を行い、それぞれの弾性、弾塑性地震応答性状を比較した。また、多層架構の漸増変形に基づく地震後残留層間変形を計算する手法を示した。本論の結論は、以下のようにまとめられる。

- 多層 NC ブレース架構の C_i分布形状は、ブレース配置 によらずほぼ等しくなる。また、弾性、弾塑性時とも に A_i分布に基づいて C_iを評価できる。
- 2) 弾性ひずみエネルギー蓄積に基づく最大絶対加速度低減効果は、上層部ほど顕著となる。この低減効果の大小関係は、概ね X < Z-B < AZ-A ≈ AZ-A であり、最大弾性ひずみエネルギー蓄積量 W_{ei,max}の大小関係と合致する。一方で、弾塑性時の最大絶対加速度は、ブレース配置によらずほぼ等しくなる。
- 3) NC ブレース配置を2層毎に交互とした Z-B, AZ-B は, 2層毎の残留相対変位を抑制することで、外周構面の 相対変位領域を通常架構(XT)と同等とできる。
- 4) Z-A, AZ-A と比較して, Z-B, AZ-B はそれぞれ, 層間変 形の連成を利用して最大層間変形, 残留層間変形角を 抑制することができる。
- 5)本論で示した計算手法による,層間変形の連成を考慮したブレース弾塑性振動後の残留層間変形の計算値は,工学的に十分な精度で解析結果と対応する。

謝 辞

本論の数値解析を実施するに当たって,広島工業大学 助教・山西央朗先生には有益な助言を頂きました。ここに 記して,感謝の意を表します。

参考文献

- 1) 日本建築学会:鋼構造制振設計指針, 2014
- 日本建築学会:非構造部材の耐震設計施工指針・同解 説および耐震設計施工要領,2003
- 小松真吾,高松隆夫,玉井宏章,山西央朗:1層Z型 NCブレース架構の地震応答性状に関する研究,鋼構 造論文集,第22巻,第88号,pp.43-53,2015.12
- 小松真吾,高松隆夫,玉井宏章,山西央朗:1層非対称Z型NCブレース架講の地震応答低減に関する研究,日本建築学会構造系論文集,第79巻,第705号, pp.1677-1685,2014.11
- 5) 小松真吾,高松隆夫,玉井宏章,山西央朗:2層Z型 NCブレース架構の地震応答性状に関する研究,鋼構 造論文集,第23巻,第91号,pp.53-64,2016.9
- 小松真吾,高松隆夫,玉井宏章,山西央朗:多層非対称Z型NCブレース架構の地震応答低減に関する研究,日本建築学会構造系論文集,第80巻,第717号, pp.1755-1762,2015.11
- 7) 小松真吾,高松隆夫,玉井宏章,山西央朗:エネル ギーの釣合に基づく Z型 NC ブレース架構の弾性地震 応答予測,日本建築学会大会学術講演梗概集,構造Ⅲ, pp.733-734,2016.8
- 8) 玉井宏章,高松隆夫,松尾彰: ノンコンプレションブレースの耐震性能向上について,日本建築学会構造系論文集,第 595 号, pp.131-138, 2005.9